DOI QR코드

DOI QR Code

Structure and Electrochemical Behavior of Aromatic Thiol Self-Assembled Monolayers on Au(111)

  • Published : 2006.03.20

Abstract

The surface structure and electrochemical behavior of self-assembled monolayers (SAMs) formed by aromatic thiols on Au(111) were investigated by scanning tunneling microscopy (STM) and cyclic voltammetry. Benzenethiol (BT) forms disordered phases on Au(111) which are composed of many bright domains, while benzyl mercaptan (BM), with a methylene unit between the aromatic group and sulfur atom, forms twodimensional ordered SAMs on Au(111). In addition, two phase-separated domains consisting of disordered and ordered phases were observed in binary SAMs formed from a 1 : 1 mixed ethanol solution of BT and BM. From STM and CV measurements, we found that the blocking efficiency of aromatic thiol SAMs coated on an Au(111) electrode for an electron transfer reaction decreases as the structural order of the SAMs increases. Molecular-scale STM and CV results obtained here will be very useful in designing functional SAMs for further applications, such as the improvement of corrosion passivation of Au(111) on an aromatic thiolmodified Au(111) surface.

Keywords

References

  1. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103 https://doi.org/10.1021/cr0300789
  2. Schreiber, J. J. Phys.: Condens. Matter 2004, 16, R881 https://doi.org/10.1088/0953-8984/16/6/016
  3. Noh, J.; Kato, H. S.; Kawai, M.; Hara, M. J. Phys. Chem. B 2002, 106, 13268 https://doi.org/10.1021/jp021742c
  4. Noh, J.; Konno, K.; Ito, E.; Hara, M. Jpn. J. Appl. Phys. 2005, 44, 1052 https://doi.org/10.1143/JJAP.44.1052
  5. Han, S. W. Bull. Korean Chem. Soc. 2005, 26, 463 https://doi.org/10.5012/bkcs.2005.26.3.463
  6. Chung, C.; Lee, M. Bull. Korean Chem. Soc. 2004, 25, 1461 https://doi.org/10.5012/bkcs.2004.25.10.1461
  7. Sung, M. M.; Yun, W. J.; Lee, S. S.; Kim, Y. Bull. Korean Chem. Soc. 2003, 24, 610 https://doi.org/10.5012/bkcs.2003.24.5.610
  8. Noh, J.; Hara, M. Langmuir 2002, 18, 1953 https://doi.org/10.1021/la010803f
  9. Tour, J. M. Acc. Chem. Res. 2000, 33, 791 https://doi.org/10.1021/ar0000612
  10. Zehner, R. W.; Parsons, B. F.; Hsung, R. P.; Sita, L. R. Langmuir 1999, 15, 1121 https://doi.org/10.1021/la981114f
  11. Baunach, T.; Kolb, D. M. Anal. Bioanal. Chem. 2002, 373, 743 https://doi.org/10.1007/s00216-002-1279-x
  12. Dhirani, A. A.; Zehner, R. W.; Hsung, R. P.; Guyot-Sionnest, P.; Sita, L. R. J. Am. Chem. Soc. 1996, 118, 3319 https://doi.org/10.1021/ja953782i
  13. Tao, Y.-T.; Wu, C.-C.; Eu, J.-Y.; Lin, W.-L. Langmuir 1997, 13, 4018 https://doi.org/10.1021/la9700984
  14. Noh, J.; Hara, M. Langmuir 2000, 16, 2045 https://doi.org/10.1021/la991423l
  15. Whelan, C. M.; Barnes, C. J.; Walker, C. G. H.; Brown, N. M. D. Surf. Sci. 1999, 425, 195 https://doi.org/10.1016/S0039-6028(99)00181-8
  16. Jung, H. H.; Won, Y. D.; Shin, S.; Kim, K. Langmuir 1999, 15, 1147 https://doi.org/10.1021/la9808667
  17. Yang, G.; Quian, Y.; Engtrakul, C.; Sita, L. R.; Liu, G.-y. J. Phys. Chem. B 2000, 104, 9059 https://doi.org/10.1021/jp001611g
  18. Noh, J.; Hara, M. Langmuir 2001, 17, 7280 https://doi.org/10.1021/la0100441
  19. Kakiuchi, T.; Iida, M.; Gon, N.; Hobara, D.; Imabayashi, S.-I.; Niki, K. Langmuir 2001, 17, 1599 https://doi.org/10.1021/la0014757
  20. Noh, J. Bull. Korean Chem. Soc. 2005, 26, 553 https://doi.org/10.5012/bkcs.2005.26.4.553
  21. Kolega, R. R.; Schlenoff, J. B. Langmuir 1998, 14, 5469 https://doi.org/10.1021/la980553b
  22. Chen, S.; Li, L.; Boozer, C. L.; Jiang, S. L. Langmuir 2001, 16, 9287 https://doi.org/10.1021/la000417i

Cited by

  1. Formation of Highly Ordered and Orientated Gold Islands: Effect of Immersion Time on the Molecular Adlayer Structure of Pentafluorobenzenethiols (PFBT) SAMs on Au(111) vol.28, pp.27, 2012, https://doi.org/10.1021/la301601c
  2. Electrochemical, High-Resolution Photoemission Spectroscopy and vdW-DFT Study of the Thermal Stability of Benzenethiol and Benzeneselenol Monolayers on Au(111) vol.28, pp.38, 2012, https://doi.org/10.1021/la3024937
  3. Adsorption characteristics of OH-terminated alkanethiol and arenethiol on Au(111) surfaces vol.4, pp.6, 2012, https://doi.org/10.1039/c2nr11495j
  4. Effect of cysteamine layer on the interaction between gold and ZrO 2 surfaces vol.30, pp.10, 2013, https://doi.org/10.1007/s11814-013-0126-4
  5. Structure and Electronic and Charge-Transfer Properties of Mercaptobenzoic Acid and Mercaptobenzoic Acid–Undecanethiol Mixed Monolayers on Au(111) vol.118, pp.51, 2014, https://doi.org/10.1021/jp510398m
  6. Electrochemical study of self-assembled monolayer adsorption vol.18, pp.8, 2014, https://doi.org/10.1007/s10008-014-2455-6
  7. vol.20, pp.2, 2014, https://doi.org/10.7464/ksct.2014.20.2.130
  8. Surfaces vol.25, pp.6, 2014, https://doi.org/10.14478/ace.2014.1100
  9. vol.52, pp.4, 2014, https://doi.org/10.9713/kcer.2014.52.4.538
  10. Two-dimensional ordering of benzenethiol self-assembled monolayers guided by displacement of cyclohexanethiols on Au(111) pp.41, 2008, https://doi.org/10.1039/b809261c
  11. Formation and Structure of Cyclopentanethiol Self-Assembled Monolayers on Au(111) vol.27, pp.6, 2006, https://doi.org/10.5012/bkcs.2006.27.6.944
  12. Formation and Annealing Effect of Tolanethioacetate Self-Assembled Monolayers on Au(111) vol.28, pp.12, 2007, https://doi.org/10.5012/bkcs.2007.28.12.2445
  13. Unique domain structure of π-conjugated tolanethioacetate self-assembled monolayers on Au(111) vol.107, pp.10, 2006, https://doi.org/10.1016/j.ultramic.2007.02.038
  14. Investigation of the Scanning Tunneling Microscopy Image, the Stacking Pattern and the Bias-voltage Dependent Structural Instability of 2,2'-Bipyridine Molecules Adsorbed on Au(111) in Terms of Electr vol.29, pp.2, 2006, https://doi.org/10.5012/bkcs.2008.29.2.438
  15. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  16. Effect of Solution Temperature on the Structure of Thioacetyl-terminated Tolane Self-assembled Monolayers on Au(111) vol.29, pp.6, 2006, https://doi.org/10.5012/bkcs.2008.29.6.1105
  17. Adsorption states and thermal desorption behaviors of thiophene derivative self-assembled monolayers on Au(111) vol.602, pp.21, 2006, https://doi.org/10.1016/j.susc.2008.08.025
  18. Electrostatic Properties of N-Acetyl-Cysteine-Coated Gold Surfaces Interacting with TiO2 Surfaces vol.30, pp.4, 2009, https://doi.org/10.5012/bkcs.2009.30.4.902
  19. Formation of large ordered domains in benzenethiol self-assembled monolayers on Au(111) observed by scanning tunneling microscopy vol.109, pp.8, 2009, https://doi.org/10.1016/j.ultramic.2009.03.036
  20. Electrostatic properties of mercaptoundecanoic-acid-coated-gold surfaces interacting with TiO2 surfaces vol.10, pp.2, 2006, https://doi.org/10.1016/j.cap.2009.07.009
  21. Formation and Superlattice of Long-Range-Ordered Self-Assembled Monolayers of Pentafluorobenzenethiols on Au(111) vol.26, pp.5, 2006, https://doi.org/10.1021/la903952c
  22. Comparison of a Fluorinated Aryl Thiol Self-Assembled Monolayer with Its Hydrogenated Counterpart on Polycrystalline Ag Substrates vol.26, pp.14, 2006, https://doi.org/10.1021/la1010314
  23. Structure and Order of Phosphonic Acid-Based Self-Assembled Monolayers on Si(100) vol.26, pp.18, 2006, https://doi.org/10.1021/la1021438
  24. Effect of 11-Mercaptoundecylphosphoric-acid Layer Formation on Gold Surfaces Interacting with Titanium Dioxide Surfaces vol.31, pp.10, 2010, https://doi.org/10.5012/bkcs.2010.31.10.2861
  25. Dependence of an Interfacial Diels-Alder Reaction Kinetics on the Density of the Immobilized Dienophile: An Example of Phase-Separation vol.32, pp.5, 2006, https://doi.org/10.5012/bkcs.2011.32.5.1679
  26. Electrostatic Properties of N-Acetyl-Cysteine-Coated Gold Surfaces Interacting with ZrO2 Surfaces vol.33, pp.9, 2006, https://doi.org/10.5012/bkcs.2012.33.9.2855
  27. 지르코니아와 금 표면 위의 메르캡토언데실인산층의 정전기적 상호작용 vol.56, pp.5, 2018, https://doi.org/10.9713/kcer.2018.56.5.625
  28. Homogeneous Dispersion of Aromatic Thiolates in the Binary Self-Assembled Monolayer on Au(111) via Displacement Revealed by Tip-Enhanced Raman Spectroscopy vol.124, pp.24, 2006, https://doi.org/10.1021/acs.jpcc.0c01507
  29. Exploring the Hydration Water Character on Atomically Dislocated Surfaces by Surface Enhanced Raman Spectroscopy vol.6, pp.11, 2006, https://doi.org/10.1021/acscentsci.0c01009