DOI QR코드

DOI QR Code

Synthesis of Symmetric Diallyl Disulfides from Baylis-Hillman Acetates

  • Published : 2006.11.20

Abstract

Keywords

References

  1. Drewes, S. E.; Roos, G. H. P. Tetrahedron 1988, 44, 4653 https://doi.org/10.1016/S0040-4020(01)86168-8
  2. Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001 https://doi.org/10.1016/0040-4020(96)00154-8
  3. Ciganek, E. In Organic Reactions, Vol. 51; Paquette, L. A., Ed.; Wiley: New York, 1997; p 201
  4. Langer, P. Angew. Chem. Int. Ed. 2000, 39, 3049 https://doi.org/10.1002/1521-3773(20000901)39:17<3049::AID-ANIE3049>3.0.CO;2-5
  5. Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627 https://doi.org/10.2174/1385272023374094
  6. Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811 https://doi.org/10.1021/cr010043d
  7. Hong, W. P.; Lee, K.-J. Synthesis 2005, 33 and references cited therein
  8. Chung, Y. M.; Lee, H. J.; Hwang, S. S.; Kim, J. N. Bull. Korean Chem. Soc. 2001, 22, 799
  9. Kim, J. N.; Lee, H. J.; Lee, K. Y.; Kim, H. S. Tetrahedron Lett. 2001, 42, 3737 https://doi.org/10.1016/S0040-4039(01)00552-4
  10. Kim, J. N.; Chung, Y. M.; Im, Y. J. Tetrahedron Lett. 2002, 43, 6209 https://doi.org/10.1016/S0040-4039(02)01314-X
  11. Kim, J. N.; Kim, H. S.; Gong, J. H.; Chung, Y. M. Tetrahedron Lett. 2001, 42, 8341 https://doi.org/10.1016/S0040-4039(01)01791-9
  12. Yi, H.-W.; Park, H. W.; Song, Y. S.; Lee, K.-J. Synthesis 2006, 1953
  13. Basavaiah, D.; Reddy, R. M.; Kumaragurubaran, N.; Sharada, D. S. Tetrahedron 2002, 58, 3693 https://doi.org/10.1016/S0040-4020(02)00332-0
  14. Familoni, O. B.; Kaye, P. T.; Klass, P. J. Chem. Commun. 1998, 24, 2563
  15. Kim, J. N.; Lee, K. Y.; Kim, H. S.; Kim, T. Y. Org. Lett. 2000, 2, 343 https://doi.org/10.1021/ol9903741
  16. Hong, W. P.; Lee, K.-J. Synthesis 2006, 963
  17. Amri, H.; El Gaied, M. M.; Ayed, T. B.; Villieras, J. Tetrahedron Lett. 1992, 33, 7345 https://doi.org/10.1016/S0040-4039(00)60183-1
  18. Horn, C. R.; Perez, M. Synlett 2005, 1480
  19. Kaye, P. T.; Nocanda, X. W. Synthesis 2001, 2389
  20. Song, Y. S.; Lee, C. H.; Lee, K.-J. J. Heterocycl. Chem. 2003, 40, 939 https://doi.org/10.1002/jhet.5570400532
  21. Park, J. B.; Ko, S. H.; Kim, B. G.; Hong, W. P.; Lee, K.- J. Bull. Korean Chem. Soc. 2004, 25, 27 https://doi.org/10.5012/bkcs.2004.25.1.027
  22. Park, J. B.; Ko, S. H.; Hong, W. P.; Lee, K.-J. Bull. Korean Chem. Soc. 2004, 25, 927 https://doi.org/10.5012/bkcs.2004.25.6.927
  23. Lee, C. H.; Lee, K.-J. Synthesis 2004, 1941
  24. Ko, S. H.; Lee, K.-J. J. Heterocycl. Chem. 2004, 41, 613 https://doi.org/10.1002/jhet.5570410422
  25. Lee, S. W.; Lee, C. H.; Lee, K.-J. Bull. Korean Chem. Soc. 2006, 27, 769 https://doi.org/10.5012/bkcs.2006.27.5.769
  26. Ji, S.-H.; Hong, W. P.; Ko, S. H.; Lee, K.-J. J. Heterocycl. Chem. 2006, 43, 799 https://doi.org/10.1002/jhet.5570430344
  27. Binary, P.; Henry, J. C.; Vidal, V.; Genet, J. P.; Dellis, P. Fr. Demande 2772027 (1999); Chem Abstr. 131, 170171
  28. Danvy, D.; Monteil, T.; Lusson, C.; Schwartz, J.-C.; Gros, C.; Noel, N.; Lecomte, J.-M.; Duhamel, P.; Duhamel, L. Eur. Pat. 634396 (1995); Chem. Abstr. 123, 228898
  29. O'Dell, D. K.; Nicholas, K. M. J. Org. Chem. 2003, 68, 6427 https://doi.org/10.1021/jo034447c
  30. Patra, A.; Roy, A. K.; Batra, S.; Bhaduri, A. P. Synlett 2002, 1819 https://doi.org/10.1021/jo034447c
  31. Basavaiah, D.; Hyma, R. S.; Kumaragurubaran, N. Tetrahedron 2000, 56, 5905 https://doi.org/10.1016/S0040-4020(00)00478-6
  32. You, S. W.; Kim, M. K.; Lee, K.-J. Bull. Korean Chem. Soc. 2000, 21, 797 https://doi.org/10.1016/S0040-4020(00)00478-6
  33. Kosower, E. M. In Glutathione; Dolphin, D.; Poulson, R.; Avramovic, O., Eds.; John Wiley: New York, 1989; Part A, pp 115-120
  34. Parry, R. J. Tetrahedron 1983, 39, 1215 https://doi.org/10.1016/S0040-4020(01)91887-3
  35. Reid, E. E. In Organic Chemistry of Bivalent Sulfur, Vol I; Chemical Publishing Co. Inc.: New York, 1958 https://doi.org/10.1016/S0040-4020(01)91887-3
  36. Cullis, C. F.; Hopton, J. D.; Trimm, D. L. J. Appl. Chem. 1968, 18, 330
  37. Tasadaque, S.; Shah, A.; Khan, K. M.; Fecker, M.; Voelter, W. Tetrahedron Lett. 2003, 44, 6789 https://doi.org/10.1016/S0040-4039(03)01402-3
  38. Field, L.; Hanley, W. S.; McVeigh, I. J. Org. Chem. 1971, 36, 2735 https://doi.org/10.1021/jo00818a002
  39. Castell, J. V.; Tun-Kyi, A. Helv. Chim. Acta 1979, 62, 2507 https://doi.org/10.1002/hlca.19790620744
  40. Galpin, I. J.; Hoyland, D. A. Tetrahedron 1985, 41, 895 https://doi.org/10.1016/S0040-4020(01)96406-3
  41. Heimer, N. E.; Field, L. J. Org. Chem. 1970, 35, 3012 https://doi.org/10.1021/jo00834a035
  42. Craine, L.; Raban, M. Chem. Rev. 1989, 89, 689 https://doi.org/10.1021/cr00094a001
  43. Benati, L.; Montevecchi, P. C.; Spagnolo, P. Tetrahedron Lett. 1986, 27, 1739 https://doi.org/10.1016/S0040-4039(00)84361-0
  44. Sosnovsky, G.; Krogh, J. A. Liebigs Ann. Chem. 1982, 126 https://doi.org/10.1016/S0040-4039(00)84361-0
  45. Takeda, K.; Horiki, K. Heterocycles 1990, 30, 367 https://doi.org/10.3987/COM-89-S71
  46. Mukaiyama, T.; Takahashi, K. Tetrahedron Lett. 1968, 9, 5907 https://doi.org/10.1016/S0040-4039(00)75437-2
  47. Boekelheide, V.; Mondt, J. L. Tetrahedron Lett. 1970, 11, 1203 https://doi.org/10.1016/S0040-4039(01)97946-8
  48. Arnitage, D. A.; Clark, M. J.; Tso, C. C. J. Chem. Soc., Perkin Trans. 1 1972, 680 https://doi.org/10.1039/p19720000680
  49. Jayasuriya, N.; Regen, S. L. Tetrahedron Lett. 1992, 33, 451 https://doi.org/10.1016/S0040-4039(00)93965-0
  50. Brzezinska, E.; Ternay, A. L. Jr. J. Org. Chem. 1994, 59, 8239 https://doi.org/10.1021/jo00105a048
  51. Brzezinska, E.; Ternay, A. L. Jr. J. Org. Chem. 1994, 59, 8239 https://doi.org/10.1021/jo00105a048

Cited by

  1. A Thioannulation Approach to Substituted Thiophenes from Morita–Baylis–Hillman Acetates of Acetylenic Aldehydes vol.78, pp.13, 2013, https://doi.org/10.1021/jo400567h
  2. -Michael Addition vol.357, pp.4, 2015, https://doi.org/10.1002/adsc.201401026
  3. A Convenient One-Pot Preparation of 2-Methyl-3-(phenylthio- methyl)quinolines from Morita-Baylis-Hillman Adducts and Their Oxidation to the Corresponding Sulfones vol.17, pp.5, 2012, https://doi.org/10.3390/molecules17055081
  4. One-pot synthesis of allyl thioacetate from benzaldehydes and activated alkenes using the Morita–Baylis–Hillman reaction as a key step vol.37, pp.2, 2016, https://doi.org/10.1080/17415993.2015.1124275
  5. A new route to allyl thiols and allyl thiocarbamates from Baylis-Hillman adducts vol.46, pp.1, 2009, https://doi.org/10.1002/jhet.3
  6. An Efficient Synthesis of an Apoptosis Inducer, F-3-2-5 by Using Octanol-Accelerated Baylis-Hillman Reaction vol.28, pp.2, 2006, https://doi.org/10.5012/bkcs.2007.28.2.179
  7. Synthesis of Symmetric Diallyl Disulfides from Baylis—Hillman Acetates. vol.38, pp.19, 2007, https://doi.org/10.1002/chin.200719088
  8. Application of the acetate of baylis‐hillman adducts in the synthesis of 3‐carbomethoxy‐2H‐thiochromenes vol.45, pp.1, 2006, https://doi.org/10.1002/jhet.5570450129
  9. A new synthetic route to 2H-benzo[g]chromene-5,10-diones involving ring closing metathesis vol.46, pp.2, 2006, https://doi.org/10.1002/jhet.54
  10. Quinolines from Morita–Baylis–Hillman acetates of 2-azidobenzaldehydes vol.65, pp.46, 2006, https://doi.org/10.1016/j.tet.2009.09.047
  11. An efficient and convenient synthesis of unsymmetrical disulfides from thioacetates vol.54, pp.51, 2006, https://doi.org/10.1016/j.tetlet.2013.10.056
  12. A straightforward and convenient synthesis of functionalized allyl thiosulfonates and allyl disulfanes vol.8, pp.70, 2006, https://doi.org/10.1039/c8ra06938g
  13. The Chemical Methods of Disulfide Bond Formation and Their Applications to Drug Conjugates vol.23, pp.25, 2006, https://doi.org/10.2174/1385272823666191202111723