Synthesis of Symmetric Diallyl Disulfides from Baylis-Hillman Acetates

Myeong Jong Cha. Young Seok Song, and Kee-Jung Lee*
Department of Chemical Engineering, Hamyang University, Seoul 133-791, Korea. "E-mail: leekj@hamyang.ac.kr Received August 25, 2006

Key Words : Baylis-IIillman reaction, Thiols, Thiolacetylation, Diallyl disulfides

During the past decade, the Baylis-Hillman (BH) reaction has been extensively studied and is now one of the most efficient carbon-carbon bond forming reaction. ${ }^{1}$ Much attention has recently been focused on the $\mathrm{S}_{3} 2^{\prime}$ nucleophilic substitution of the BH adducts with a variety of nucleophiles ${ }^{2}$ and many heterocycles have been synthesizied including quinolines, ${ }^{3}$ dihydroquinolines, ${ }^{4}$ quinolones, ${ }^{3}$ pyrrolidines, ${ }^{6}$ coumarins ${ }^{2}$ and indoles. ${ }^{7}$ It was reported that $2,2^{+}$-dithiodibenzaldehyde could be used as a masked thiosalicyl aldehyde in the BH reaction with suitably activated alkenes in the presence of DBU to give thiochromenes. ${ }^{8}$ However, the most obvious drawback is that the starting dithiodibenzaldehyde is not available commercially. As part of our continuing studies towards development of the BH chemistry, ${ }^{9}$ we desired to have the thiol group at the allylic position of 3 -aryl-2-propenoates. To the best of our knowledge, there are only limited number of reports in the literature ${ }^{10}$ for the conversion of the BH adducts into the corresponding 2-acetylthiomethyl-2-propenoates in acidic conditions using thiolacetic acid, but the thiolacetylation of the BH acetates is not known. In principle, such acetylthiomethyl compounds after hydrolysis of thiolester group might be extended further toward the building of thiochromene derivatives via an intramolecular nucleophilic aromatic substitution reaction as shown in Scheme 1.
The readily available BH acetates $1 \mathbf{a}-\mathbf{h}^{2 / 1}$ provided a convenient starting point for the synthesis of 2 -acetyl-thiomethyl-2-propenoates $\mathbf{2 a - h}$. Treatment of the BH acetates 1a-h with thiolacetic acid in the presence of triethylamine at room temperature gave the 2 -acetylthio-methyl-2-propenoates $2 a-h$ in good to excellent yields as shown in Table I (Scheme 2).
The stereochemistry of the products was established by compairing 'HNMR values of olefinic proton with literature values of similar compounds. ${ }^{12}$ In all cases, the stereoselectivity was found to be $100 \%(E)$-selectivity. In order to prepare the unknown thiol derivative 3 , we carried out the

Scheme 2

Table 1. Methyl (E)-3-Aryl-2-acetylthiomethyl-2-propenoates 2

Reactant	R	Product	Yield (\%)	Time
$\mathbf{1 a}$	$2,4,5-\mathrm{F}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$	$\mathbf{2 a}$	62	2 h
$\mathbf{1 b}$	$\mathbf{2 - C l}-5-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$\mathbf{2 b}$	75	10 min
$\mathbf{1 c}$	$2,3-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$\mathbf{2 c}$	68	$1 \mathbf{h}$
$\mathbf{1 d}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathbf{2 d}$	92	1.5 h
$\mathbf{1 e}$	$2-\mathrm{FC}_{6} \mathrm{H}_{4}$	$\mathbf{2 e}$	89	2.5 h
$\mathbf{1 f}$	$2-\mathrm{BrC}_{6} \mathrm{H}_{4}$	$\mathbf{2 f}$	97	10 min
$\mathbf{1 g}$	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathbf{2 g}$	75	10 min
$\mathbf{1 h}$	$\mathbf{4}-\mathrm{Me}^{\circ} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathbf{2 h}$	87	0.5 h

hydrolysis of thioacetyl derivative $2 a$ with weakly basic NaN_{3} in aqueous acetone ${ }^{13}$ at reflux temperature. The desired allyl thiol 3a was not obtained. Instead, symmetric diallyl disufides $\mathbf{4 a}$ produced in 71% yield. This result led us to transform the representative acetylthiomethyl derivatives $\mathbf{2 b} \mathbf{b}$ into diallyl disufides $\mathbf{4 b}$-h under the similar reaction conditions. We then examined the effect of the base. In the case of using NaOMe in methanol the same reaction occurred rapidly, but the yields of disulfides are generally low. The results and reaction conditions were summarized in Table 2.

The interconversion of thiols and disulfides is a fundamental transformation in organosulfur chemistry and such switching plays important role in biological system. ${ }^{14}$

The easy oxidation of thiols on exposure to air is well known. ${ }^{15}$ It is also known that autooxidation of thiols is accelerated by bases. ${ }^{16}$ Literatures reveal the availability of a

Table 2. Diallyl Disufídes 4

Ractant	R	Product	Method ${ }^{\text {a }}$	Yield (\%)	Time (h)
2a	2,4,5- $\mathrm{F}_{3} \mathrm{C}_{6} \mathrm{H}_{2}$	4a	A	71	7
2 b	$2-\mathrm{Cl}-5-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	4b	A	67	20
			B	61	5
2 c	$2,3-\mathrm{Cl}_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	4 c	A	70	10
2 d	$\mathrm{C}_{6} \mathrm{H}_{5}$	$4 d$	A	86	18
			B	65	0.5
2 e	$2-\mathrm{FC}_{6} \mathrm{H}_{4}$	4 e	A	60	15
2 f	$2-\mathrm{BrC}_{6} \mathrm{H}_{4}$	4 f	A	86	25
			B	44	4
2 g	$4-\mathrm{ClC}_{6} \mathrm{H}_{4}$	4 g	A	82	16
			B	41	0.5
2h	$4-\mathrm{MeOC} 6 \mathrm{H}_{4}$	4h	A	83	20
			B	51	1

Method A: NaN_{3} in 50% aqueous acetone. Method B: NaOMe in MeOII
variety of techniques for preparing both symmetric and unsymmetric disulfides, many of which are based upon the reaction of a thiol with a sulfenylating agent such as sulfenyl halides, ${ }^{17}$ sulfenamides, ${ }^{18}$ sulfenimides, ${ }^{19}$ sulfenylhydrazides, ${ }^{20}$ and disulfides. ${ }^{21}$
In summary, we have demonstrated an efficient synthesis of symmetric diallyl disulfides by treatment of the BaylisHillman acetates with thiolacetic acid followed by hydrolysis with sodium azide. Further studies on their use in various chemical transformations including thiochromene synthesis are now in progress.

Experimental Section

Silica gel 60 (70-230 mesh ASTM) used for column chromatography was supplied by E. Merck. Analytical TLC analysis was carried out on a Merck silica gel $60 \mathrm{~F}_{254}$ TLC plates. Melting points were taken using an Electrothemnal melting point apparatus and are uncorrected. Electron impact (EI) mass spectra were obtained using a Jeol SX102 mass spectrometer. IR spectra were recorded on a Nicolet Magna 550 FTRR spectrometer. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were measured on a Gemini 300 spectrometer using CDCl_{3}. All chemical shifts are reported in ppm relative to TMS and coupling constants (J) are expressed in Hz .
All the required Baylis-Hillman acetates 1a-h were prepared by the reaction of the corresponding aldehydes with methyl acrylate in the presence of DABCO followed by acetylation with acetic anhydride according to the literature procedures. ${ }^{2.11}$
Methyl (E)-3-Aryl-2-acetylthiomethyl-2-propenoates 2a-h; General Procedure: To a stirred solution of $\mathbf{1}$ (2 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added $\mathrm{CH}_{3} \mathrm{COSH}(0.17 \mathrm{~g}, 2.2$ $\mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(0.24 \mathrm{~g}, 2.4 \mathrm{mmol})$ at r.t. After stirring at the same temperature for the time indicated in Table 1, the reaction mixture was diluted with water (5 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The combined organic layers were dried over anhydrous MgSO_{4} and the solvent
was evaporated in vacto. The reaction mixture was chromatographed on silica gel eluting with hexane/EtOAc (5 :1) to afford pure 2 .
The physical and spectral data of 2a-h prepared by this general method are as follows.

2a: 62%, white solid, $\mathrm{mp} 59-59.5^{\circ} \mathrm{C}$; $\mathrm{R}(\mathrm{KBr}) 1706,1680$, $1631,1505,1431,1335 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}) $\delta 2.34(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.95\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.97-7.05$ (m, 1H, Ar), 7.23-7.31 (m, 1H, Ar), $7.68(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$.

2b: 75%, yellow solid, mp $68-69^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}) 1711,1696$, $1607,1523,1441,1347 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.34(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.63(\mathrm{~d}, J$ $=8.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.79(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}), 8.17-8.23(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar})$.

2c: 68%, white solid, $\mathrm{mp} 82^{\circ} \mathrm{C}$; $\mathrm{R}(\mathrm{KBr}) 1707,1690$, $1451,1437,1419,1361,1286 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.31$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.89\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.21-$ $7.29(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.47-7.50(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}), 7.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$.

2d: 92%, oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1715,1693,1630,1435,1267$ cm^{-1}; ${ }^{1} \mathrm{HNMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.80\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right)$, $4.04\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.31-7.38(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 7.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$.

2e: 89%, white solid, mp $50-51^{\circ} \mathrm{C}$; IR (KBr) 1715,1685 , $1633,1610,1483,1435,1309,1260 \mathrm{~cm}^{-1}$; 'HNMR $\left(\mathrm{CDCl}_{3}\right)$ $\delta 2.33\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.00\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $7.09-7.22(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.34-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.84(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$.

2f: 97%, white solid, mp $69^{\circ} \mathrm{C}$; IR (KBr) 1704,1466 , $1437,1419,1361,1286 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 2.31(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.86\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.91\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.21-7.39$ $(\mathrm{m}, 3 \mathrm{H}, \mathrm{Ar}), 7.63(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}), 7.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$.

2g: 75%, white solid, mp $70-71^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 1718,1686$, $1623,1591,1491,1422,1269 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.03\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 7.33 (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.75 (s, 1H, CH).

2h: 87%, oil; $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1709,1690,1604,1512,1436$, $1259 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 2.37\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 3.82(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.84\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.11\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.94(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.39(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 7.76(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH})$.

Diallyl Disulfides 4a-h; General Procedure: Method A: To a solution of $2 \mathrm{a}-\mathrm{h}(2 \mathrm{mmol})$ in 50% aqueous acetone (10 mL) was added $\mathrm{NaN}_{3}(0.19 \mathrm{~g}, 3 \mathrm{mmol})$ and stirred at reflux temperature for the time indicated in Table 2. The reaction mixture was concentrated under reduced pressure and the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 10 \mathrm{~mL})$. The organic layers were dried over anhydrous MgSO_{4} and the solvent was evaporated in vacto. The reaction mixture was chromatographed on silica gel eluting with hexane/EtOAc ($10: 1$) to afford pure $\mathbf{4 a - h}$.

The physical and spectral data of $4 a-h$ prepared by this general method are as follows.

4a: 71%, white solid, $\mathrm{mp} 102-103^{\circ} \mathrm{C}$; IR (KBr) 1720 , $1635,1619,1503,1427,1332,1295,1260 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.66\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.87\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.94-7.03$ $(\mathrm{m}, 2 \mathrm{H}, \mathrm{Ar}), 7.50-7.59(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.69(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 30.1,52.6,105.9,118.0,131.4,145.1$, $148.7,152.3,154.2,157.6,166.7 ;$ MS: $\mathrm{m} / \mathrm{z}(\%)=522(2)$ $\left[\mathrm{M}^{+}\right], 491(24), 459(17), 261(60), 229(100), 169(35)$.
4b: 67%, yellow solid, $\mathrm{mp} 151-152{ }^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{KBr}) 1708$,
$1639,1598,1562,1515,1437,1338,1280 \mathrm{~cm}^{-1}$; 'H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.83\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.88\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.40$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}) 7.58(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}), 8.02-8.09(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{Ar}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 24.0,52.6,124.4,124.5,124.8$, $127.3,131.5,135.5,143.5,145.6,165.5 ; \mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=$ No $\mathrm{M}^{+}, 251$ (40), 236 (100), 192 (26), 190 (43), 146 (39), 102 (22).

4c: 70%, white solid, $\mathrm{mp} 85-86^{\circ} \mathrm{C}$; IR (KBr) 1702,1630 , $1580,1557,1451,1435,1410,1284,1254 \mathrm{~cm}^{-1}$; 'H NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.51\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.85\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.23-7.48$ $(\mathrm{m}, 6 \mathrm{H}, \mathrm{Ar}), 7.75(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 30.1$, $52.4,127.3,128.5,130.6,131.3,133.5,135.5,137.5,138.2$, $166.9 ; \mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=550(3)\left[\mathrm{M}^{+}\right], 483(17), 275(10), 243$ (100), 183 (75), 149 (82).

4d: 86\%, oil; IR ($\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1716,1627,1493,1447,1434$, $1266 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.74\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.84(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.30-7.52(\mathrm{~m}, 10 \mathrm{H}, \mathrm{Ar}), 7.76(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}),{ }^{13} \mathrm{C}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 30.1,52.2,128.6,128.9,129.0,129.7$, $134.9,141.1,167.8 ; \mathrm{MS}: \mathrm{m} / \mathrm{z}(\%)=414(2)\left[\mathrm{M}^{+}\right], 207(11)$, 175 (80), 115 (100), 91 (20).
4e: 60%, white solid, $\mathrm{mp} 87.5-88.5^{\circ} \mathrm{C}$; IR (KBr) 1711, $1630,1608,1482,1455,1436,1309,1265 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.66\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.84\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.05-7.38$ $(\mathrm{m}, 6 \mathrm{H}, \mathrm{Ar}), 7.57-7.62(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.79(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR (CDCl_{3}) $\delta 30.3,52.3,115.6,122.8,124.2,130.7$, $133.4,134.5,158.8,162.1,167.2$; MS: $\mathrm{m} / \mathrm{z}(\%)=450(6)$ $\left[\mathrm{M}^{+}\right], 419(20), 387(25), 225(32), 193$ (100), 133 (47).
4f: 86%, white solid, $\mathrm{mp} 84.5^{\circ} \mathrm{C}$; IR (KBr) 1709,1623 , $1584,1464,1432,1295,1253 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta$ $3.53\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.84\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.18-7.60(\mathrm{~m}, 8 \mathrm{H}$, $\mathrm{Ar}), 7.73(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 30.1,52.3$, $124.3,127.4,130.1,130.5,132.8,135.3,139.9,141.0$, 167.2; MS: m/z (\%) = No M ${ }^{+}, 461$ (18), 459 (18), 334 (8), 332 (7), 320 (13), 318 (12), 293 (58), 255 (40), 253 (50), 205 (42), 174 (88), 147 (40), 115 (100).
$4 \mathrm{~g}: 82 \%$, oil; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 1715,1627,1591,1490,1434$, $1264 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 3.71\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.85(\mathrm{~s}$, $\left.6 \mathrm{H}, \mathrm{OCH}_{3}\right), 7.38(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 7.43(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $4 \mathrm{H}, \mathrm{Ar}), 7.70(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right) \delta 30.1,52.3$, $128.9,129.3,131.0,133.2,135.1,139.8,167.5$; MS: m/z $(\%)=482(1)\left[\mathrm{M}^{+}\right], 243(34), 241(92), 211(36), 209(100)$, 181 (21), 149 (71), 115 (53).
4h: 83%, white solid, $\mathrm{mp} 68-69^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) 1709,1604$, $1571,1511,1435,1305,1259 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta$ $3.80\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right), 3.84\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{OCH}_{3}\right), 6.92(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $4 \mathrm{H}, \mathrm{Ar}), 7.52(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{Ar}), 7.72(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta 30.2,52.1,55.3,114.1,126.4,127.4,131.8$, $141.0,160.4,168.1 ;$ MS: $\mathrm{m} / \mathrm{z}(\%)=$ No $\mathrm{M}^{+}, 237$ (86), 205 (79), 177 (24), 145 (100).

Method B: To a solution of the appropriate $2(2 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{OH}(5 \mathrm{~mL})$ was added $\mathrm{NaOCH}_{3}(0.12 \mathrm{~g}, 2.2 \mathrm{mmol})$ and stirred at reflux temperature for the time indicated in Table 2. The work-up procedure was the same as described above to afford the corresponding 4.

Acknowledgments. This work was supported by the Research Fund of Hanyang University (HY-2006-1)

References

I. For reviews of the Baylis-Hillman reaction, see: (a) Drewes, S. E.; Roos, G. H. P. Terrahedron 1988, 44, 4653. (b) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001 . (c) Ciganek, E. In Organic Reactions, Vol. 51; Paquette, L. A., Ed.; Wiley: New York, 1997; p 201. (d) Langer, P. Angew. Chem. Int. Ed. 2000, 39, 3049. (e) Kim, J. N.; Lee, K. Y. Curr. Org. Chem. 2002, 6, 627. (f) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 81 I.
2. Hong. W. P.; Lee, K.-J. Synthesis 2005, 33 and references cited therein.
3. (a) Chung, Y. M.; Lee, H. J.; Hwang, S. S.; Kim, J. N. Bu/f. Korean Chem. Soc. 2001, 22, 799. (b) Kim, J. N., Lee, H. J., Lee, K. Y.; Kim, H. S. Tetrahedron Lett. 2001, 42, 3737 . (c) Kim, J. N.; Chung. Y. M.; Im, Y. J. Tetrahedron Lett. 2002, 43, 6209.
4. (a) Kim, J. N.; Kim, H. S.; Gong, J. H.; Chung, Y. M. Tetrahedron Leff. 2001, 42, 8341. (b) Yi, H.-W.; Park, H. W.; Song, Y. S.; Lee, K.-J. Synthesis 2006, 1953.
5. (a) Basavaiah, D.; Reddy, R. M.; Kumaragurubaran, N.; Sharada, D. S. Tetrohedron 2002, 58 , 3693 . (b) Familoni, O. B.; Kaye, P. T.; Klass, P. J. Chem. Conntm. 1998, 24, 2563. (c) Kim, J. N.; Lee, K. Y.; Kim, H. S.; Kim, T. Y. Org. Letl. 2000, 2, 343. (d) Hong, W. P.; Lee, K.-J. Synthesis 2006, 963.
6. Amri, H.; El Gaied, M. M.; Ayed, T. B.; Villieras, J. Tetrahedron Left, 1992, 33, 7345.
7. Horn, C. R.,; Perez, M. Synett 2005, 1480 .
8. Kaye, P. T.; Nocanda, X. W. Synthesis 2001, 2389.
9. (a) Song, Y. S.; Lee, C. H.; Lee, K.-J. J. Heterocycl. Chem. 2003, 40, 939. (b) Park, J. B.; Ko, S. H.; Kim, B. G;; Hong, W. P.; Lee, K.J. Bttl. Korean Chem. Soc. 2004, 25, 27 . (c) Park, J. B.; Ko, S. H.; Hong, W. P.; Lee, K.-J. Bull. Korean Chem. Soc. 2004, 25, 927. (d) Lee, C. H.; Lee, K.-J. Synthesis 2004, 1941. (e) Ko, S. H.; Lee, K.-J. J. Heterocycl. Chem. 2004, 41, 613. (§) Lee, S. W.; Lee, C. H.; Lee, K.-J. Bull. Korean Chem. Soc. 2006, 27, 769. (g) Ji, S.-H.; Hong, W. P.; Ko, S. H.; Lee, K.-J. J. Heterocccl. Chem. 2006, 43, 799.
10. (a) Binary, P.; Henry, J. C.; Vidal, V,; Genet, J. P.; Dellis, P. F:: Demande 2772027 (1999), Chem Abstr. 131, 170171. (b) Danvy, D.; Monteil, T.; Lusson, C.; Schwartz, J.-C.; Gros, C.; Noel, N.; Lecomte, J.-M.; Duhamel, P.; Duhamel, L. Eur. Pat. 634396 (1995); Chem. Abstr. 123, 228898.
11. O'Dell. D. K.; Nicholas, K. M. J. Org. Chem. 2003, 68, 6427.
12. (a) Patra, A.; Roy, A. K.; Batra, S.; Bhaduri, A. P. Syntett 2002. 1819. (b) Basavaiah, D.; Hyma, R. S.; Kumaragurubaran, N. Tetrahedron 2000, 56, 5905.
13. You, S. W., Kim, M. K.; Lee, K.-J. Buhl. Korean Chem. Soc. 2000, 21, 797.
14. (a) Kosower, E. M. In Glutathione; Dolphin, D.; Poulson, R.; Ayramovic, O., Eds.; John Wiley: New York, 1989; Part A, pp 115-120. (b) Parry, R. J. Tetrahedron 1983, 39, 1215.
15. Reid, E. E. In Organic Chemisty of Bivalent Sulfur, Vol I; Chemical Publishing Co. Inc.: New York, 1958.
16. (a) Cullis, C. F.; Hopton, J. D.; Trimm, D. L. J. Appl. Chem. 1968, 18, 330. (b) Tasadaque, S.; Shah, A.; Khan, K. M.; Fecker, M.; Voelter, W. Tetrahedron Lett. 2003, 44, 6789.
17. (a) Field, L.; Hanley, W. S.; McVeigh, I. J. Org. Chem. 1971, 36, 2735. (b) Castell, J. V.; Tun-Kyi, A. Hev, Chim. Acta 1979, 62, 2507. (c) Galpin, I. J.; Hoyland, D. A. Tetrahedron 1985, 41, 895.
18. (a) Heimer. N. E.; Field, L. J. Org. Chem. 1970, 35, 3012. (b) Craine, L.; Raban, M. Chem. Rev. 1989, 89, 689. (c) Benati, L.; Montevecchi, P. C., Spagnolo, P. Tetrahedron Lett. 1986, 27, 1739.
19. (a) Sosnovsky, G.; Krogh, J. A. Liebigs Ann, Chem. 1982, 126. (b) Takeda, K.; Horiki, K. Heterocycles 1990, 30, 367.
20. (a) Mukaiyama, T.; Takahashi, K. Tetrahedron Lett. 1968, 9, 5907. (b) Boekelheide, V.; Mondt J. L. Terrahedron Lett. 1970, II, 1203.
21. (a) Arnitage, D. A.; Clark, M. J.; Tso, C. C. J. Chem. Soc., Perkin Trafs. / 1972, 680. (b) Jayasuriya, N.; Regen, S. L. Tefrahedron Lett. 1992, 33, 45I. (c) Brzezinska, E.; Ternay, A. L. Jr. J. Org. Chem. 1994, 59, 8239 .

