DOI QR코드

DOI QR Code

QSPR Analysis of Solvent Effect on Selectivity of 18-Crown-6 between $Nd^{3+}$ and $Eu^{3+}$ Ions: a Monte Carlo Simulation Study

  • Kim, Hag-Sung (Department of Environmental & Living Chemistry, Ulsan College)
  • Published : 2006.12.20

Abstract

We have investigated the solvent effects on $\Delta log\;K_s $(the difference of stability constant of binding) and the different free energies of binding of $Nd^{3+}$ and $Eu^{3+}$ ions to 18-crown-6, i.e., the selectivity of $Nd^{3+}$ and $Eu^{3+}$ ions to 18-crown-6 using a Monte Carlo simulation of statistical perturbation theory (SPT) in diverse solvents. The stability constant ($\Delta log\;K_s $) of binding of $Nd^{3+}$ and $Eu^{3+}$ ions to 18-crown-6, in $CH_3OH$ was calculated in this study as -1.06 agrees well with the different experimental results of -0.44~-0.6, respectively. We have reported here the quantitative solvent-polarity relationships (QSPR) studied on the solvent effects the relative free energies of binding of $Nd^{3+}$ and $Eu^{3+}$ ions to 18-crown-6. From the calculated coefficients of QSPR, we have noted that solvent polarity (ET) and Kamlet -Tafts solvatochromic parameters (b ) dominate the differences in relative solvation Gibbs free energies of $Nd^{3+}$ and $Eu^{3+}$ ions but basicity (Bj) dominates the negative values in differences in the stability constant ($\Delta log\;K_s $) as well as the relative free energies of binding of $Nd^{3+}$ and $Eu^{3+}$ ions to 18-crown-6 and acidity (Aj) dominates the positive values in differences in the stability constant ($\Delta log\;K_s $) as well as the relative free energies of binding of $Nd^{3+}$ and $Eu^{3+}$ ions to 18-crown-6.

Keywords

References

  1. Wang, J.; Kollman, P. A. J. Am. Chem. Soc. 1998, 120, 11106 https://doi.org/10.1021/ja980464l
  2. Lybrand, T. P.; McCammon, J. A.; Wipff, G. Proc. Natl. Acad. Sci. USA 1986, 83, 833 https://doi.org/10.1073/pnas.83.4.833
  3. Choi, H. S.; Suh, S. B.; Cho, S. J.; Kim, K. S. Proc. Natl. Acad. Sci. USA 1998, 95, 12094 https://doi.org/10.1073/pnas.95.21.12094
  4. Mazor, M. H.; McCammon, J. A.; Lybrand, T. P. J. Am. Chem. Soc. 1990, 112, 4411 https://doi.org/10.1021/ja00167a044
  5. Perdersen, C. J. J. Am. Chem. Soc. 1967, 89, 7017 https://doi.org/10.1021/ja01002a035
  6. Burgess, J. Metal Ions in Solution; Ellis Horwood: New York, 1978
  7. Ohtaki, H.; Radnai, T. Chem. Rev. 1993, 93, 1157 https://doi.org/10.1021/cr00019a014
  8. Kim, J.; Lee, S.; Cho, S. J.; Mhin, B. J.; Kim, K. S. J. Chem. Phys. 1995, 102, 839 https://doi.org/10.1063/1.469199
  9. Lee, H. M.; Kim, J.; Lee, S.; Mhin, B. J.; Kim, K. S. J. Chem. Phys. 1999, 111, 3995 https://doi.org/10.1063/1.479702
  10. Lee, S. H.; Rasaiah, J. C. J. Phys. Chem. 1996, 100, 1420 https://doi.org/10.1021/jp953050c
  11. Koneshan, S.; Rasaiah, J. C.; Lynden-Bell, R. M.; Lee, S. H. J. Phys. Chem. B 1998, 102, 4193 https://doi.org/10.1021/jp980642x
  12. Marcus, Y. Ion Properties; Marcel Dekker: New York, 1997
  13. Marcus, Y. Ion Solvation; Wiley-Interscience: New York, 1985
  14. Bathel, J. M.; Krienke, H.; Kunz, W. Physical Chemistry of Electrolyte Solutions; Steinkopff: Darmstadt, 1998
  15. Warshel, A. Computer Modeling of Chemical Reactions in Enzymes and Solutions; John Wiley: New York, 1991
  16. Clementi, E. Modern Techniques in Computational Chemistry; Escom: Leiden, 1990; Chapter 1
  17. Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford University Press: Oxford, 1987
  18. Simkin, B. Y.; Sheikhet, I. I. Quantum Chemical and Statistical Theory of Solution: A Comprehensive Approach; Ellis Horwood: London, 1995
  19. Steemers, F. J.; Verboom, W.; Reinhoudt, D. N.; van der Tol, E. B.; Verhoeven, J. W. J. Am. Chem. Soc. 1995, 117, 9408 https://doi.org/10.1021/ja00142a004
  20. Baaden, M.; Berny, F.; Madic, C.; Wipff, G. J. Phys. Chem. A 2001, 147, 7659
  21. Slooff, L. H.; Polman, A.; oude Wolbers, M. P.; van Veggel, F. C. J. M.; Reinhoudt, D. N.; Hofstraat, J. W. J. Appl. Phys. 1998, 83, 497 https://doi.org/10.1063/1.366721
  22. Durand, S.; Dognon, J.; Guilbaud, P.; Rabbe, C.; Wipff, G. J. Chem. Soc., Perkin Trans. 2000, 2, 705
  23. Cui, C.; Kim, K. S. J. Phys. Chem. A 1999, 103, 2751 https://doi.org/10.1021/jp982919z
  24. Hebbink, G. A.; Grave, L.; Woldering, L. A.; Reinhoudt, D. N.; van Veggel, F. C. J. M. J. Phys. Chem. A 2003, 107, 2483 https://doi.org/10.1021/jp0260090
  25. Michaux, G.; Reisse, J. J. Am. Chem. Soc. 1982, 104, 6895 https://doi.org/10.1021/ja00389a002
  26. Valleau, J. P.; Torrie, G. M. In Statistical Mechanics, Part A; Berne, B. J., Ed.; Plenum: New York, 1977; p 169
  27. Jorgensen, W. L.; Chandrasekhar, J.; Madura, J. D.; Impey, R. W.; Klein, M. L. J. Chem. Phys. 1983, 79, 926 https://doi.org/10.1063/1.445869
  28. Rebertus, D. W.; Berne, B. J.; Chandler, D. J. Chem. Phys. 1979, 70, 3395 https://doi.org/10.1063/1.437871
  29. Mezei, M.; Mehrotra, P. K.; Beveridge, D. L. J. Am. Chem. Soc. 1985, 107, 2239 https://doi.org/10.1021/ja00294a005
  30. Chandrasekhar, J.; Jorgensen, W. L. J. Am. Chem. Soc. 1985, 107, 2974 https://doi.org/10.1021/ja00296a024
  31. Kollman, P. A. Chem. Rev. 1993, 93, 2395 https://doi.org/10.1021/cr00023a004
  32. Leo, A.; Hansch, C.; Elkins, D. Chem. Rev. 1971, 71, 525 https://doi.org/10.1021/cr60274a001
  33. Hansch, C.; Leo, A. Substituent Constants for Correlation Analysis in Chemistry and Biology; Wiley: New York, 1979
  34. Dunn, W. J.; Block, J. S.; Pearlman, R. S. Partition Coefficient; Determination and Estimation; Pergamon: New York, 1986
  35. Kim, K. S.; Tarakeshwar, P.; Lee, J. Y. Chem. Rev. 2000, 100, 4145 https://doi.org/10.1021/cr990051i
  36. Hawkins, G. D.; Liotard, D. A.; Cramer, C. J.; Truhlar, D. G. J. Org. Chem. 1998, 63, 4305 https://doi.org/10.1021/jo980046z
  37. Lee, I.; Kim, C. K.; Han, I. S.; Lee, H. W.; Kim, W. K.; Kim, Y. B. J. Phys. Chem. B 1999, 103, 7302 https://doi.org/10.1021/jp991115w
  38. Kim, H. S. Chem. Phys. Lett. 2001, 346, 135 https://doi.org/10.1016/S0009-2614(01)00954-X
  39. Babu, C. S.; Lim, C. J. Phys. Chem. B 1999, 103, 7958 https://doi.org/10.1021/jp9921912
  40. Kim, H. S. J. Phys. Chem. B 2002, 106, 11579 https://doi.org/10.1021/jp021190y
  41. Kim, H. S. J. Phys. Chem. B 2004, 108, 11753 https://doi.org/10.1021/jp038021d
  42. Kim, H. S. Chem. Phys. 2001, 269, 295 https://doi.org/10.1016/S0301-0104(01)00369-X
  43. Kim, H. S. THEOCHEM. 2001, 541, 59 https://doi.org/10.1016/S0166-1280(00)00746-6
  44. Kim, H. S. Phys. Chem. Chem. Phys. 2000, 2, 1919 https://doi.org/10.1039/b000737o
  45. Kim, H. S. Bull. Korean Chem. Soc. 2003, 24, 751; 2006, 27, 315 https://doi.org/10.5012/bkcs.2006.27.2.315
  46. Zwanzig, R. W. J. Chem. Phys. 1954, 22, 1420 https://doi.org/10.1063/1.1740409
  47. Jorgensen, W. L.; Blake, J. F.; Buckner, J. K. Chem. Phys. 1989, 129, 193 https://doi.org/10.1016/0301-0104(89)80004-7
  48. Jorgensen, W. L. BOSS Version 4.5; Yale University: New Haven, CT, 2003
  49. Jorgensen, W. L. Free Energy Changes in Solution in Encyclopedia of Computational Chemistry; Schielyer, P. v. R., Ed.; Wiley: New York, 1998; Vol. 2, p 1061
  50. van Veggel, F. C. J. M.; Reinhoudt, D. N. Chem. Eur. J. 1999, 5, 90 https://doi.org/10.1002/(SICI)1521-3765(19990104)5:1<90::AID-CHEM90>3.0.CO;2-8
  51. Izatt, R. M.; Bradshow, J. S.; Nielsen, S. A.; Lamb, J. D.; Christensen, J. J. Chem. Rev. 1985, 85, 271 https://doi.org/10.1021/cr00068a003
  52. Christian, R. Solvents and Solvent Effects in Organic Chemistry, 3rd ed; Wiley-VCH: 2003; p 389
  53. Marcus, Y. Ion Solvation; John-Wiley & Sons Limited: 1985; p 71
  54. Sun, Y.; Kollman, P. J. Comp. Chem. 1992, 13, 33 https://doi.org/10.1002/jcc.540130105
  55. Dunitz, J. D.; Dobler, M.; Seiler, P.; Phizackerley, R. P. Acta. Crystallogr. 1974, B30, 2733
  56. Straatsma, T. P.; McCammon, J. A. J. Chem. Phys. 1989, 91, 3631 https://doi.org/10.1063/1.456896
  57. Michaux, G.; Reisse, J. J. Am. Chem. Soc. 1982, 104, 6895 https://doi.org/10.1021/ja00389a002
  58. Live, D.; Chan, S. I. J. Am. Chem. Soc. 1976, 98, 3769 https://doi.org/10.1021/ja00429a006
  59. Bockris, J. O'M.; Reddy, A. K. N. Modern Electrochemistry; Plenum Press: New York, 1970; Vol. 1, Chapter 2, p 45
  60. Chung, J. J.; Kim, H.-S. Bull. Korean Chem. Soc. 1993, 14, 220
  61. Mezei, M.; Beveridge, D. L. J. Chem. Phys. 1981, 74, 6902 https://doi.org/10.1063/1.441101
  62. Babu, C. S.; Lim, C. J. Phys. Chem. B 1999, 103, 7958 https://doi.org/10.1021/jp9921912

Cited by

  1. Studies of Polyazaheterocyclic Ligands Used in Lanthanide and Actinide Extraction Processes vol.32, pp.1, 2014, https://doi.org/10.1080/07366299.2013.810967
  2. Estimation of Stability Constants of Copper(II) Complexes with α-Amino Acids Using Connectivity Index 3χv. Common Model for the Binary and Ternary Complexes vol.29, pp.9, 2011, https://doi.org/10.1002/cjoc.201180316
  3. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450