DOI QR코드

DOI QR Code

Polymeric Iodide-ion Selective Electrodes Based on Urea Derivative as an Ionophore

  • Jeong, Dae-Cheol (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Lee, Hyo-Kyoung (Department of Chemistry and Institute of Basic Science, Chonnam National University) ;
  • Jeon, Seung-Won (Department of Chemistry and Institute of Basic Science, Chonnam National University)
  • 발행 : 2006.12.20

초록

The polymeric membrane electrodes based on urea derivative as an ionophore were prepared and studied for the iodide-ion selective electrode. This membrane exhibits a linear stable response over a wide concentration range ($1.0\;{\times}\;10^{-5}\sim1.0\;{\times}\;10^{-2}$) with a slope of -57.7 mV/decade, a detection limit of log[$I^-$] = -5.63, and a selectivity coefficient for iodide against perchlorate anion (log$K^{pot}_{I^-,j}$ = -1.42). The selectivity series of the membrane gives the follow as $I^-$ > $SCN^-$, $Sal^-$ > $ClO_4^-$ > $NO_3^-$ > $Br^-$ > $NO_2^-$ > $Cl^-$ > $F^-$. The proposed electrode showed good selectivity and response for iodide anion over a wide variety of other anions in pH 5.0 buffer solutions.

키워드

참고문헌

  1. Hofmeister, F. Arch. Exp. Patol. Pharmakol. 1888, 24, 247 https://doi.org/10.1007/BF01918191
  2. Marcus, Y. Ion Solvation; Wiley: New York, 1985; pp 107-109
  3. Sollner, K.; Shean, G. M. J. Am. Chem. Soc. 1964, 86, 1901 https://doi.org/10.1021/ja01063a085
  4. Pranitis, D. M.; Telting-Diaz, M.; Meyerhoff, M. E. Crit. Rev. Anal. Chem. 1992, 23, 163 https://doi.org/10.1080/10408349208050853
  5. Hisamoto, H.; Siswanta, D.; Nishihara, H.; Suzuki, K. Anal. Chim. Acta 1995, 304, 171 https://doi.org/10.1016/0003-2670(94)00614-R
  6. Li, Z. Q.; Yuan, R.; Yu, R. Q. Talanta 1998, 46, 943 https://doi.org/10.1016/S0039-9140(97)00358-5
  7. Malinowska, E.; Meyerhoff, M. E. Anal. Chim. Acta 1995, 300, 33 https://doi.org/10.1016/0003-2670(94)00407-D
  8. Shamsipur, M.; Khayation, G.; Tangestaninejad, S. Electroanalysis 1999, 11, 1340 https://doi.org/10.1002/(SICI)1521-4109(199912)11:18<1340::AID-ELAN1340>3.0.CO;2-M
  9. Li, Z. Z.; Zhang, X. B.; Yu, R. Q. Anal. Sci. 2002, 18, 423 https://doi.org/10.2116/analsci.18.423
  10. Shahrokhian, S.; Hamzehloei, A.; Bagherzadeh, M. Anal. Chem. 2002, 74, 3312 https://doi.org/10.1021/ac020099n
  11. Li, J. Z.; Yuan, R.; Yu, R. Q. Analyst 1994, 119, 1363 https://doi.org/10.1039/an9941901363
  12. Amini, M. K.; Shahrokhian, S.; Tangestaninejad, S. Anal. Chim. Acta 1999, 402, 137 https://doi.org/10.1016/S0003-2670(99)00549-8
  13. Shahrokhian, S. Anal. Chem. 2001, 73, 5972 https://doi.org/10.1021/ac010541m
  14. Yuan, R.; Chai, Y. Q.; Yu, R. Q. Anal. Chem. 1993, 65, 2572 https://doi.org/10.1021/ac00067a005
  15. Yuan, R.; Song, Y. Q.; Chai, Y. Q. Talanta 1999, 48, 649 https://doi.org/10.1016/S0039-9140(98)00289-6
  16. Shahrokhian, S.; Amini, M. K.; Kia, R.; Tangestaninejad, S. Anal. Chem. 2000, 72, 956 https://doi.org/10.1021/ac990749w
  17. Chai, Y. Q.; Xu, W. J.; Yuan, R. Acta Chim. Sinica 2002, 60, 2192 (in Chinese)
  18. Yuan, R.; Wang, X. L.; Chai, Y. Q. Electrochem. Commun. 2003, 5, 717 https://doi.org/10.1016/S1388-2481(03)00171-1
  19. Sun, Z. Y.; Yuan, R.; Chai, Y. Q.; Xu, L. Anal. Bioanal. Chem. 2004, 378, 490 https://doi.org/10.1007/s00216-003-2301-7
  20. Dai, J.; Chai, Y.; Yuan, R.; Zhong, X.; Liu, Y.; Tang, D. Analytical Sciences 2004, 20, 1661 https://doi.org/10.2116/analsci.20.1661
  21. Daunert, S.; Bachas, L. G. Anal. Chem. 1989, 61, 499 https://doi.org/10.1021/ac00180a025
  22. Wotring, V. J.; Johnson, D. M.; Bachas, L. G. Anal. Chem. 1990, 62, 1506 https://doi.org/10.1021/ac00213a030
  23. Li, Z. Q.; Yuan, R.; Ying, M.; Song, Y. Q.; Yu, R. Q. Anal. Lett. 1997, 30, 1455 https://doi.org/10.1080/00032719708001667
  24. Cho, E. J.; Moon, J. W.; Ko, S. W.; Lee, J. Y.; Kim, S. K.; Yoon, J.; Nam, K. C. J. Am. Chem. Soc. 2003, 125, 12376 https://doi.org/10.1021/ja036248g
  25. Jeong, T.; Lee, H. K.; Jeong, D. C.; Jeon, S. Talanta 2005, 65(1), 543 https://doi.org/10.1016/j.talanta.2004.07.016

피인용 문헌

  1. Developments in the Field of Conducting and Non-conducting Polymer Based Potentiometric Membrane Sensors for Ions Over the Past Decade vol.8, pp.4, 2008, https://doi.org/10.3390/s8042331
  2. Electrosynthesis of Layered Organo-Manganese Dioxide Framework-Doped with Cobalt for Iodide Sensing vol.33, pp.19, 2017, https://doi.org/10.1021/acs.langmuir.7b00419
  3. Highly selective solid-state sensor for iodide based on the combined use of platinum (IV) phthalocyanine and solidified pyridinium ionic liquid pp.1433-0768, 2019, https://doi.org/10.1007/s10008-018-4159-9
  4. Potentiometric Iodide Selectivity of Polymer‐Membrane Sensors Based on Co(II) Triazole Derivative vol.20, pp.13, 2008, https://doi.org/10.1002/elan.200704197
  5. Electrochemical determination of iodide by poly(3-aminophenylboronic acid) film electrode at moderately low pH ranges vol.687, pp.2, 2006, https://doi.org/10.1016/j.aca.2010.12.019
  6. Iodide selective membrane electrodes based on a Molybdenum–Salen as a neutral carrier vol.31, pp.8, 2006, https://doi.org/10.1016/j.msec.2011.06.006
  7. Selective Sorption of Iodide onto Organo-MnO<sub>2</sub> Film and Its Electrochemical Desorption and Detection vol.877, pp.None, 2006, https://doi.org/10.1016/j.aca.2015.03.041
  8. Electrochemical Anion Sensing: Supramolecular Approaches vol.120, pp.3, 2006, https://doi.org/10.1021/acs.chemrev.9b00624