DOI QR코드

DOI QR Code

The Effect of Substrate on Ecophysiological Characteristics of Green Macroalga Ulva pertusa Kjellman (Chlorophyta)

구멍갈파래(Ulva pertusa Kjellman)의 생태생리에 대한 생육기질의 효과

  • Published : 2005.12.01

Abstract

Seashore joining with land and sea, which is typical habitat for marine macroalgae, is classified two types of shore as soft- and hard-bottom shore according to topographical (geological) and ecological features. We compared two of Ulva pertusa Kjellman from two contrasting habitats, sandy (soft-bottom, Haenam) and rocky shore (hard-bottom, Hadong) in terms of chlorophyll-a fluorescence and its parameters, and various photosynthetic pigment and nutrient content in the tissue of those. Both of habitats were different in the light environment such as light attenuation coefficient and even in nutrient concentration of ambient seawater. Electron transport rate (ETR) of Ulva from sandy shore was higher than from rocky shore. The range of photosynthetic pigment content in the tissue of U. pertusa was significantly much more in from sandy shore, and also nitrogen and phosphorus content were significantly higher except for carbon content. However, there were no significant differences in the ratio of among photosynthetic pigments, and N:P ratio was similar between each other, even though significantly different. Our result implied on the reason of why most of green tides in the worldwide concentrated and frequently occurred at sites with sandy, muddy and silty bottoms, being classified as soft-bottom shore.

Keywords

References

  1. Abal E.G. and Dennison W.C. 1996. Seagrass depth range and water quality in southern Moreton Bay, Queensland, Australia. Mar. Freshwater Res.47: 763-771 https://doi.org/10.1071/MF9960763
  2. Albrecht A.S. 1998. Soft bottom versus hard rock: community ecology of macroalgae on intertidal mussel beds in the Wadden Sea. J. Exp. Mar. Bio. Ecol. 229: 85-109 https://doi.org/10.1016/S0022-0981(98)00044-6
  3. Bach S.S., Borum J., Fortes M.D. and Duarte C.M. 1998. Species composition and plant performance of mixed seagrass beds along a siltation gradient at Cape Bolinao, The Philippines. Mar. Ecol. Prog. Ser. 174: 247-256 https://doi.org/10.3354/meps174247
  4. Bearnall J. and Morris I. 1976. The concept of light intensity adaptation in marine phytoplanktor;: some experiments with Phaeodactylum tricornutum. Mar. BioI. 37: 377-387 https://doi.org/10.1007/BF00387494
  5. Bolam S.G., Fernandes T.F., Read P. and Raffaelli D. 2000. Effects of macroalgal mats on intertidal sandflats: an experimental study. J. Exp. Mar. BioI. Ecol. 249: 123-137 https://doi.org/10.1016/S0022-0981(00)00185-4
  6. Campbell S. 2001. Ammonium requirements of fast-growing ephemeral macroalgae in a nutrient-enriched marine embayment (Port Phillip Bay, Australia). Mar. Ecol. Prog. Ser. 209: 99-107 https://doi.org/10.3354/meps209099
  7. Choi T.S. 2003. Ecophysiological characteristics of green macroalga Ulva pertusa L. from eelgrass habitats. Ph.D Thesis, Chonnam National University, Kwangju, Korea
  8. Choi T.S., Choi J.K., Park S.M., Kim J.H. and Kim K.Y. 2001. Winter biomass of Ulva mats in a rocky intertidal zone of the southern coast of Korea. Korean J. Environ. BioI. 19: 3742. (in Korean)
  9. Cloern J.E. 1996. Phytoplankton bloom dynamics in coastal ecosystems: a review with some general lessons from sustained investigation of San Francisco Bay, California. Reviews of Geophysics 34: 127-168 https://doi.org/10.1029/96RG00986
  10. Cullen J.J. 1991. Hypotheses to explain high-nutrient conditions in the open sea. Limnol. Oceanogr. 36: 1578-1599 https://doi.org/10.4319/lo.1991.36.8.1578
  11. D'Elia C.F., Steudler P.A. and Corwin L. 1977. Determination of total nitrogen in aqueous samples using persulphate digestion. Limnol. Oceanogr. 22: 760-764 https://doi.org/10.4319/lo.1977.22.4.0760
  12. Davison I.R. and Pearson G.A. 1996. Stress tolerance in intertidal seaweeds. J. Phycol. 32: 197-211 https://doi.org/10.1111/j.0022-3646.1996.00197.x
  13. Dennison W.C., Orth R.J.,Moore K.A., Stevenson J.C., Carter V., Kollar S., Bergstrom P.W. and Batiuk R.A. 1993. Assessing water quality with submersed aquatic vegetation: habitat requirements as barometers of Chesapeak Bay health. Bio-Science 43: 86-94 https://doi.org/10.2307/1311969
  14. Dring M.J., Wagner A., Boeskow J. and L ning K. 1996. Sensitivity of intertidal and subtidal red algae to UVA and UVB radiation as monitored by chlorophyll, fluorescence: influence of collection depth and season, and length of irradiation, Eur. J. Phycol. 31: 293-302 https://doi.org/10.1080/09670269600651511
  15. Duarte C.M. 1991. Seagrass depth limits. Aquat. Bot. 40: 363-377 https://doi.org/10.1016/0304-3770(91)90081-F
  16. Dunton K.H. 1994. Seasonal growth and biomass of the subtropical seagrass Halodule wrightii in relation to continuous measurements of underwater irradiance. Mar. Biol. 120: 479-489 https://doi.org/10.1007/BF00680223
  17. Falkowski P.G. and Raven J.A. 1997. Aquatic photosynthesis. Blackwell Science
  18. Figueroa F.L., Nygard C., Ekelund N. and Gomez I. 2003. Photobiological characteristics and photosynthetic UV responses in two Ulva species (Chlorophyta) from southern Spain. J. Photochem. Photobiol. B-Biol. 72: 35-44 https://doi.org/10.1016/j.jphotobiol.2003.09.002
  19. Fong P., Boyer K.E. and Zedler J.B. 1998. Developing and in situ bioassay of nutrient enrichment in coastal estuaries and lagoons using tissue nitrogen content of the opportunistic alga, Enteromorpha intestinalis. J. Exp. Mar. Biol. Ecol. 231: 63-79 https://doi.org/10.1016/S0022-0981(98)00085-9
  20. Fong P., Donohoe R.M. and Zedler J.B. 1994. Nutrient concentration in tissue of the macroalga Enteromorpha spp. as an indicator of nutrient history: an experimental evaluation using field microcosms. Mar. Ecol. Prog. Ser. 106: 273-281 https://doi.org/10.3354/meps106273
  21. Fong P., Kamer K., Boyer K. and Boyle K.A. 2001. Nutrient content of macroalgae with differing morphologies may indicate sources of nutrients for tropical marine systems. Mar. Ecol. Prog. Ser. 220: 137-152 https://doi.org/10.3354/meps220137
  22. Gomez I. and Figueroa F.L. 1998 Effects of solar UV stress on chlorophyll fluorescence kinetics of intertidal macroalgae from southern Spain: a case study in Gelidium species. J. Appl. Phycol. 10: 285-294 https://doi.org/10.1023/A:1008021230738
  23. Hanelt D. 1998. Capability of dynamic photoinhibition in Arctic macroalgae is related to their depth distribution. Mar. BioI. 131: 361-369 https://doi.org/10.1007/s002270050329
  24. Hemminga M.A. and Duarte C.M. 2000. Seagrass ecology. Cambridge University Press, Cambridge
  25. Hiraoka M., Ohno M., Kawaguchi S. and Yoshida G. 2004. Crossing test among floating Ulva thalli forming 'green tide' in Japan. Hydrobiologia 512: 239-245 https://doi.org/10.1023/B:HYDR.0000020332.12641.a2
  26. Horrocks J.L., Stewart G.R. and Dennison W.C 1995. Tissue nutrient content of Gracilaria spp (Rhodophyta) and water quality along an estuarine gradient. Mar. Freshwater Res. 46: 975-983 https://doi.org/10.1071/MF9950975
  27. Jorgensen E.G. 1977. Photosynthesis. In: Werner D. (ed.), The Biology of Diatoms. Vol. 15 of Botanical Monographs. University of California Press, Berkeley, pp. 150-168
  28. Kang S.Y. 2002. Structure and ecophysiology of Zostera marina population in southwest coast of Korea during summer. MS Thesis, Chonnam National University, Kwangju, Korea. (in Korean)
  29. Kenworthy W.J. and Fonseca M.S, 1996. Light requirements of seagrasses Halodule wrightii and Syringodium filiforme derived from the relationship between diffuse light attenuation and maximum depth distribution. Estuaries 19: 740-750 https://doi.org/10.2307/1352533
  30. Kim K.Y., Choi T.S., Huh S.H. and Garbary D.J. 1998. Seasonality and community structure of subtidal benthic algae from Daedo Island, southern Korea. Bot. Mar. 41: 357-365 https://doi.org/10.1515/botm.1998.41.1-6.357
  31. Kim K.Y., Choi T.S., Kim J.H., Han T., Shin H.W. and Garbary D.J. 2004. Physiological ecology and seasonality of Ulva pertusa on a temperate rocky shore. Phycologia 43: 483-492 https://doi.org/10.2216/i0031-8884-43-4-483.1
  32. Kirk J.T.O. 1994. Light and photosynthesis in aquatic ecosystem. Cambridge University Press, Cambridge
  33. Koch E.W. 2001. Beyond light: physical, geological and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24: 1-17 https://doi.org/10.2307/1352808
  34. Lapointe B.E. and Tenore K.R. 1981. Experimental outdoor studies with Ulvafasciata Delile. I. Interactions of light and nitrogen on nutrient uptake, growth and biochemical composition. J. Exp. Mar. BioI. Ecol. 53: 135-152 https://doi.org/10.1016/0022-0981(81)90015-0
  35. Lavery P.S., Lukatelich R.J. and McComb A.J. 1991. Changes in the biomass and species composition of macroalgae in an eutrophic estuary. Estuar. Coast Shelf Sci. 33: 1-22 https://doi.org/10.1016/0272-7714(91)90067-L
  36. Little C. 2000. The biology of soft shores and estuaries. Oxford University Press Inc., New York
  37. Littler M.M. and Littler, D.S. 1980. The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory tests of a functional form model. Am. Nat. 116: 25- 44 https://doi.org/10.1086/283610
  38. Lobban C.S. and Harrison P.J. 1997. Seaweed ecology and physiology. Cambridge University Press, Cambridge
  39. McCook L.J. 1999. Macroalgae, nutrients and phase shifts on coral reefs: scientific issues and management consequences for the Great Barrier Reef. Coral Reefs 18: 357-367 https://doi.org/10.1007/s003380050213
  40. Miller C.B. 2004. Biological oceanography. Blackwell Science
  41. Mobley C.D. 1994. Light and water: radiative transfer in natural waters. Academic Press
  42. Norkko A. and Bonsdorff E. 1996. Rapid zoobenthic community responses to accumulations of drifting algae. Mar. Ecol. Prog. Ser. 131: 143-157 https://doi.org/10.3354/meps131143
  43. Perez-Llorens J.L., Vergara J.J., Pino R.R., Hem ndez I., Peralta G. and Niell F.X. 1996. The effect of photoacclimation on the photosynthetic physiology of Ulva curvata and Ulva rotundata. Euro. J. Phycol.. 31: 349-359 https://doi.org/10.1080/09670269600651581
  44. Phillips R.C. and McRoy C.P. 1990. Seagrass research methods. Unesco Press, France
  45. Platt T., Gallegos C.L. and Harrison W.G. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 38: 687-701
  46. Ralph P.J., Grademann R., Larkum A.W.D. and Kuhl M. 2002. Spatial heterogeneity in active chlorophyll fluorescence and PSI! activity of coral tissues. Mar. Biol. 141: 639-646 https://doi.org/10.1007/s00227-002-0866-x
  47. Ramus J. and Venable M. 1987. Temporal ammonium patchiness and growth rate in Codium and Ulva (Ulvophyceae). J. Phycol. 23: 518-523 https://doi.org/10.1111/j.1529-8817.1987.tb04200.x
  48. Rosenberg R., Elmgren R., Fleischer S., Jonsson P., Persson G. and Dahlin H. 1990. Marine eutrophication case studies in Sweden. Ambio 19: 102-108
  49. Schramm W. and Nienhuis P.H. 1996. Marine benthic vegetation: recent changes and the effects of eutrophication. Vol. 123 of Ecological Studies, Springer-Verlag, Berlin
  50. Strickland J.D. and Parsons T.R. 1972. A practical handbook of seawater analysis. Bull. Fish. Res. Board Can. 167: 1-311
  51. Wellburn A.R. 1994. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant hysiol. 144: 307-313 https://doi.org/10.1016/S0176-1617(11)81192-2
  52. Wharfe J.R. 1977. An ecological survey of the benthic invertebrate macrofauna of the lower Medway Estuary, Kent. J. Anim. Ecol. 46: 93-113 https://doi.org/10.2307/3949
  53. Wheeler P.A. and Bjornsater B.R. 1992. Seasonal fluctuations in tissue nitrogen, phosphorus, and N:P for five macroalgal species common to the Pacific northwest coast. J. Phycol. 28: 1-6 https://doi.org/10.1111/j.1529-8817.1992.tb04489.x