References
- H. Amann, Periodic solutions for semilinear parabolic equations in 'Nonlinear Analysis: A collection of Papers in Honor of Erich Rothe' Academic Press, New York, 1978, 1-29
- A. Ambrosetti and G. Prodi, On the inversion of some differentiable mappings with singularities between Banach space, Ann. Mat. Pura Appl. 93 (1972), 231- 247 https://doi.org/10.1007/BF02412022
- H. Brezis and L. Nirenberg, Chacterization of range of some nonlinear operators and applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa CI. Sci. (4) 4 (1978), 225-323
- S. Fucik and J. Mawhin, Generalized periodic solutions of nonlinear telegraph equations, Nonlinear Anal. Theory Methods Appl. 2 (1978), 609-617 https://doi.org/10.1016/0362-546X(78)90008-1
- R. E. Gains and J. L. Mawhin, Coincidence degree and nonlinear differential equations, Lecture Notes in Math. 568 (1977)
- N. Hirano and W. S. Kim, Existence of stable and unstable solutions for semilinear parabolic problems with a jumping nonlinearity, Nonlinear Anal. Theory Methods Appl. 26 (1996), no. 6, 1143-1160 https://doi.org/10.1016/0362-546X(94)00284-O
- N. Hirano and W. S. Kim, Multiplicity and stability result for semilinear parabolic equations, Discrete Contin. Dyn. Syst. Ser. B 2 (1996), no. 2, 271-280 https://doi.org/10.3934/dcds.1996.2.271
- N. Hirano and W. S. Kim, Periodic-Dirichlet boundary value problem semi-linear dissipative hyperbolic equations, J. Math. Anal. Appl. 148 (1990), no. 2, 371-377 https://doi.org/10.1016/0022-247X(90)90007-3
- W. S. Kim, A note on the existence of solution for semilinear heat equations with polynomial growth nonlonearity, Comment. Math. Univ. Carolin. 24 (1993), no. 3, 425-431
- W. S. Kim, Boundary value problem for nonlinear telegraph equations with superlinear growth, Nonlinear Anal. Theory Methods Appl. 12 (1988), no. 12, 1371-1376 https://doi.org/10.1016/0362-546X(88)90084-3
- W. S. Kim, Double-Periodic Boundary value problem for non-linear dissipative hyperbolic equations, J. Math. Anal. Appl., 145 (1990), no. 1, 1-16 https://doi.org/10.1016/0022-247X(90)90426-G
- W. S. Kim, Multiple Doubly-periodic solutions of semilinear dissipative hyperbolic equations, J. Math. Anal. Appl. 197 (1996), 735-748 https://doi.org/10.1006/jmaa.1996.0049
- W. S. Kim, Multiple existence of periodic solutions for semilinear parabolic equations with large source, Houston J. Math., to appear
- W. S. Kim, Multiplicity result for periodic solutions of semilinear hyperbolic equations with coercive growth nonlinearity, J. Korean Math. Soc. 38 (2001), 853-881
- W. S. Kim, Multiplicity result for periodic solutions of solutions of semilinear parabolic equations, Commun. Appl. Anal. 6 (2002), no. 1, 135-146
- W. S. Kim, Multiplicity result for semilinear dissipative hyperbolic equations, J. Math. Anal. Appl. 231 (1999), 34-46 https://doi.org/10.1006/jmaa.1998.6207
- W. S. Kim, Periodic-Dirichlet Boundary value problem for nonlinear dissipative hyperbolic equations at resonance, Bull. Korean Math. Soc. 26 (1989), no. 2, 221-229
- J. Mawhin, Periodic solutions of nonlinear telegraph equations, in Dynamical Systems, Badnarek and Cesari, eds, Academic Press, 1977, 193-210
- J. Mawhin and M. Willem, Multiple solutions of the periodic boundary value problem for some forced pendulum type equations, J. Differential Equations 62 (1984), no. 2, 221-229
- M. N. Nkashma and M. Willem, Time periodic solutions of boundary value problems for nonlinear heat, telegraph and beam equations, Seminaire de mathematique, Universite Catholique de Louvain, Rapport no. 54 (1984), vi-1-vi-32
- V. Stastnova and S. Fucik, Weak periodic solutions of the boundary value problem for nonlinear heat equations, Appl. Math. 24 (1979), 284-304
- O. Vejiovda, Partial Differential equations:time-periodic solutions, Matinus Ni- jhoft Publishers, Boston, 1982