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A MEAN CONDITION ON FORCING TERM FOR
MULTIPLICITY OF PERIODIC SOLUTIONS FOR
NONLINEAR DISSIPATIVE HYPERBOLIC EQUATIONS

WaN SE Kim

ABSTRACT. A condition on forcing term insuring the multiplicity
of Dirichlet-periodic solutions of nonlinear dissipative hyperbolic
equations is discussed. The nonlinear term is assumed to have co-
ercive growth.

1. Introuction

Let R be the set of all reals and  C R"™, n > 1, be a bounded domain
with smooth boundary &Q which is assumed to be of class C2.

Let Q@ = (0,27) x Q and L2(Q) be the space of measurable and
Lebesgue square integrable real-valued functions on @ with usual inner
product < -,- > and corresponding norm || - ||z

By H(§) we mean the completion of C§(£2) with respect to the norm

|| - |l1 defined by
lll? = / S Do () d.
1)<

H?(Q) stands for the usual Sovolev space ; i.e., the completion of C%(Q)

with respect to the norm || - |2 defined by
lelg = [ 3 1D*p(@)Pda.
Q
Ja<2
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We denote by A\; < Ag < - - - the eigenvalues of the problem
—Dzu=Mu, u€ HJQ)

and ¢; the positive normalized eigenfunction corresponding to X;.

The purpose of this work is to investigate a condition on forcing term
insuring multiplicity of periodic solutions of the nonlinear dissipative
hyperbolic equations of the form

2
(E) %g - DNgu+ ﬁ%? —Au+ g(u) = h(t,z) in Q,
(B1) u(t,z) =0 on (0,2m) x 09,
(B2) u(0,z) = u(2m,z) on Q

where 3(# 0) € R, g : R — R is a continuous nonlinear function with
coercive growth, and with a restriction on the left-hand side growth by
the difference of Ay and A1 and h € L?(Q) is 27-periodic with respect to
t.

Moreover, we assume that there exist constants ag > 0 and by > 0
such that

(H1) lg(u)| < aolu| +by for all u € R.

Dissipative hyperbolic equations of the form (F) are related to the
mathematical interpretation of undistorted plane waves. A more general
interpretation is given by the telegraph equations of the form in one
space dimension '

uy — Agu+ (o + Bug + afu = 0,

where c is the speed of light and « the capacity and 3 the inductive
damping factor, satisfied by the voltage or the current u as a function
of time t and the position = along a cable, here £ measures the length
of the cable from an initial point. For the existence of a generalized
solution, Mawhin[18] give a solvabality of the doubly-periodic problem
to the equation of the form

(1.1) Ust — gy + Bug + g(u) = h(t,z), (t,z) € R?,

where 8 # 0, v = u(t,z) and ¢ is a continuous function on R of at
most linear growth. He obtain results for resonance and nonresonance
situations related to the eigenvalues of the linear differential operator
U — Upg + PBug for the doubly-periodic problem. The results do not
depend upon the size of |3| and non-vanishing of this number bing only
assumed to insure the compactness properties required by a treatment
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using topological degree. The results are more in sprit of work on ordi-
nary and elliptic partial differential equations. Mawhin[18], and Fucik
and Mawhin[4] deal with the existence of a periodic solution in both
variables to the equations of the form

(1.2) Ugt — Ugy + Pug — pu +vu” + g(u) = h(t,z), (t,z) € R?,

where 3, u, v € R, 8 # 0, u = u(t,z) and g is a continuous bounded
function. The authors decompose the set R? of all pairs (u, v) (see [21])
and obtain existence results of different types on different component.
For the existence of a solution for the doubly-periodic problem for the
equations of the form (1.1) whose nonlinearity grow exponentially, we re-
fer Kim[11]. The author impose a condition on the mean of source term
to apply continuation theorem(see [5]). In [8] and [17], the existence
of a solution for the Dirichlet-periodic resonance problem for (1.1) are
treated. The authors imposed on the source term the orthogonal con-
dition and the Landesman-Lazer condition, respectively, with the first
eigenfunction of the linear differential operator to prove the resonance
problem. In [10], the existence of a solution for the Dirichlet-periodic
problem for the equation of the form (1.1) is discussed when the rate of
growth allowed in the nonlinear term g is any polynomial growth. The
only condition on the nonlinear term ia a weak type of sign condition
which is a strong tool in the proof of the result. Any restriction on the
forcing term is not needed except that term is in L?(cf. [9]). The author
use Leray-Schauder theory to prove the result. Brezis and Nirenberg|(3]
apply their general results on the ranges of nonlinear operators to the
Dirichlet-periodic problem for the equations of the form

(1.3) uy + Eu+ Bus + g(t,z,u) = h(t,z), (t,z) € R x Q,
where 3 # 0, u = u(t,z) and

Ev(z)= Y. (=1)D*(ans(z)D%(x)).

la],|B]<m

The function g is supposed to be continuous with sublinear growth in
u, satisfies a sign condition and Landesman-Lazer type conditions. The
authors prove the existence of a solution with some additional condi-
tions related to the kernel of the operator E and the regularity results
are also stated. In [20], Nkashama and Willem treat the existence of a
solution for the Dirichlet-periodic problem for (1.3) whose nonlinearity
g is jumping over two conesecutive eigenvalues. They prove results by
using coincidence degree. The readers can refer to the book[22] for a
survey of boundary value problems for dissipative hyperbolic equations.
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But few seems to be known about the multiple existence of gener-
alized solutions of Dirichlet-periodic solutions of the form (E) with a
mean condition on the forcing term from which is motivated the coer-
civity of the nonlinear term(cf. [1], [6], [7], [13], [15], [19]). In [12] and
(14]. The multiple existence of doubly-periodic solutions of the equa-
tions of the form (1.1) and Dirichlet-periodic solutions of the equations
of the form (E) are treated, respectively(cf. [16]). These results are re-
lated to Ambrosetti-prodi[2] who initiate so call Ambrosetti-Prodi type
multiplicity in the study of the Dirichlet problem to elliptic equations.
In our result, we discuss a mean condition on the forcing term insuring
the multiple existnce of solutions. We impose the coercive growth con-
dition on nonlinear term. We take advantage of the properties of the
first eigenfunction ¢; in the proofs of our results. Our proof of the main
theorem is based on Mawhin’s continuation theorem(see [5]).

2. Preliminary results

Let’s define the linear operator
L :DomL C L*(Q) — L*(Q)
by

DomL = {u € L2((0,2m), B2(@) " H(@) | 2 ¢ 12(Q), 22 € 12(@),

uw(0,z) = u(2m,z),z € Q}

and )
0%u ou
By Fourier series and Parseval inequality, we have easily

8

< 1w, 2% 5= 3122, forall ue DomL.

5 |12
Hence kerL = ker(Ax + MI) = kerL* since Az + A1 is self-adjoint and
ker(A; + A1I) is one space dimension generated by the eigenfunction
¢1. Therefore L is a closed, densely defined linear operator and Im(L) =
[kerL]t; ie., L?(Q) = kerL @ ImL.

Let us consider a continous projection P; : L?(Q) — L?(Q) such
that ImP; = KerL. Then L%(Q) = kerL @ kerP;. We consider another
continuous projection P : 2(Q) — L?(Q) defined by

(P2h)(t, z) / h(t,z)é1(z)dtdzd(x).
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Then we have L?(Q) = ImP, P ImL, kerP, = ImL, and L?(Q)/ImL is
isomorphic to Im/Ps.

Since dim[L?(Q)/ImL] = dim[ImP,] = dim[kerL] = 1, we have an
isomorphism J : ImP, — kerL.

By the closed graph theorm, the generalized right inverse of L defined
by

K= [L)DomLﬂIrnL]—l :ImL — ImL

is continuous.

If we equip the space DomL with the norm

ulBoms —// 21; W 24 3 (Dbu)?dtdz.

[3]<2

Then there exist a constant ¢ > 0 independent of h € ImL, u = Kh
such that
| K h|lpomz, < cllhlz2-

Therefore K : ImL — ImL is continuous and by the compact imbedding
of DomL in L?(Q), we have that K : ImL — ImL is compact

LEMMA 2.1. L is a closed, densely defined linear operator such
that kerL = [ImL]!' and such that the right inverse K : ImL — ImL is
completely continuous.

Proof. See [3] and [20]. O

3. Multiplicity results

Let us consider the following

02 0

(Ey) _1; — Ogu+ 5*—u —Au+ pg(u) = ph(t,z) in Q,
ot ot

(By) u(t,z) =0 on (0,2w) x 0%,

(B2) u(0,z) = u(2n,z) on {2,

where u € [0,1].
Let L : DomL C L%(Q) — L*(Q) be defined as before. If we define a
sustitution operator N : L*(Q) — L*(Q) by

(Nu)(t,x) = g(u(t,x)) - h(t,.’L‘)

for v € L?(Q) and (t,z) € Q, then N maps L%(Q) continuously into
itself and transforms bounded sets into bounded sets. Let G be any
open bounded subset of L2(Q), then PN : G — L%*(Q) is bounded
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and K(I — P;) : G — L?(Q) is compact and continuous. Thus N is
L-compact on G (see [5]).

The coincidence degree D (L + uN,G) is well defined and constant
in p if Lu + pNu # 0 for p € [0,1] and v € DomL N OG. It is easy
to check that (u,u) is a weak solution of (E,)(By)(Be) if and only if
1 € DomZL and

(3.1,) Lu+ puNu = 0.
Here, we assume the following
(Hs) lim inf g(u) = +o0,
ul—o0
= inf .
(H3) m = inf g(u) >0

Moreover, we assume that
(Hy) lim sup |g_(u_)| < A2 — A1
U—>—00 U
Then it follows from (Hy) that there exists a € (0, A2 — A1) and b > 0
satisfying
lg(u)] < alu|+b for all u < 0.
For h € L?(Q), we write Ah = JJo W(t, )1 (z)dtdz.

LEMMA 3.1. Let ¢ > 0 be given. Then for every 6 > 0 there exists a
constant K (&) > 0 such that, for every 4 € ImL, o € R, the following
implication holds.

(3.2) / /Q g(ads + @)prdtdz < ¢ = |a| < |}il|z + K (5).

Proof. Let § > 0 be arbitrarily given, and put

1 1
(3.3) 7'::\/27r+§—g.

We have chosen ¢, to satisfy the condition

(3.4) [ gz =1,
Q
and find 7 > 0 such that for every subset M C @ we have the following
(3.5) M| <n = // 2 (z)dtdz < r?,
M

where | - | denotes the Lebesgue measure.
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Let M, be the set {z € Q| ¢1(x) < &}. We fix £ > 0 such that
|M¢| < n/(4n). Next, from (H,) we can choose sufficiently large v > 0
such that

We define the sets A = {(t,z) € Q\ ((0,27) x M) | |a¢1 + 4| > v},
B = AU ((0,2m) x M¢). Then we have

2
o> [[ glags + ndtds > Za,
A U]
and hence
(3.6) |A[ <n/2, |B|<n.
On the other hand, we have

0= 2// a¢udtdr
Q@

< // (lagr + a)* — lagy[*)dtdz + 2/ log || i|dtdx
Q\B B
and, from (3.4), it follows that

2ra’? = / / |1 |*dtdz + / |y |?dtdz.

Using (3.5), (3.6), (3.7) and the definition of the set B, we obtain that

2ra? < // |y +u[2dtdx+2// \a¢1||u|dtdw+// | |*dtdz
Q\B

< ]Q]u + 2|ar||t)| 2 + a?r2.
This yields that

(3.7),

2Jafr Q1
2
< —— .
We conclude that
2r Q|
Hence, (3.2) holds as a consequence of (3.3), (3.8), and the proof is
complete. 0

From Lemma 3.1, we have the following.

LEMMA 3.2. Let h € L%(Q) be given such that Ak > 0 and suppose
hypotheses (Hy) — (Hy) hold.
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Then there exist constsnts ¥ = 5(h) > 0, M = M(h) > 0 such
that, for every u € [0,1], every solution of problem (3.1,) of the form
u=qa¢+ 4 with 4 € ImL and o € R, we have

la] <4, ||| < M.

Proof. Let us take inner product of (3.1,) with %t‘, then from the
periodicity of u in ¢, we have

ou
el < )
15elzs < el

Again, take inner product of (3.1,) with w. This yields that

O = Ml 1921125 + // s < [ il

By hypotheses (H;) — (Hy), we have that there exists a constsnt C; > 0
such that g(u)u > —alu|? — Oy for every u € R. There exists therefore
a constant Cy > 0 such that

(A2 =M1 —a)l[allf2 < Ca(1+ o) + ||Al| 2| lull 2 -
Hence we have
(3.9) llal|7z < Cs5(1 +o?)

for some constant C3 > 0 independent of u .
Taking inner product of (3.1,,) with ¢; and using the fact that u > 0,

we obtain that
/ / glady + @)prdtdz = Ah.
Q

By Lemma 3,1 with ¢ = AR and § = 1/(2v/C3), we find a constant
Cy > 0 such that
1
3.10 < ——|lu Cy.
(3.10) laf < 2\/73IIUIIL2+ 4

Combining (3.10) with (3.9), we obtain that || < (1+|a|)/24-Cy, hence
lal < 7, ||tl|2 < M for some constant 4 > 0, M > 0, and the proof is
complete. O

REMARK. Let h € L?(Q), then, by hypothesis (H») and Lemma 3.2,
we have a number §(h) > 4 such that

(3.11) / /Q glag(z) + @)p(x)dtdr > / /Q hén (x)dtdz

for |a] > 7.
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LeEMMA 3.3. Let h € L?(Q) be given such that Ah > 0 and let
hypotheses (Hy) — (Hy) hold. Suppose G(h) C L*(Q) be a bounded
open set such that the implication

lal < Ao, |[i][r2 < My = u=ad+1de Gh)

holds where 5y and My are numbers such that Y > v and My > M.
Then, for any bounded open set G in L?(Q) such that G(h) C G, we
have D, (L+ N,G) = 0.

Proof. By Lemma 3.2, the equation
(3.12) Lu + g(u) = vh

has no solution on 9G for v € [0, 1]. Hence, we may apply the homotopy
argument with respect to v. Taking inner product of (3.12) with ¢;, we
obtain, from hypothesis (Hj), that

vAh= // u)prdtdr > 27rm/ ¢1dtdx > 0.

Hence, (3.12) has no solution for v = 0. Therefore, we have Dp(L +
N,G) = D(L+ g,G) =0, and the proof is complete. O

Now, let 4, M be defined in Lemma 3.2 and I:{emiark, and h € LQ(Q)
with Ah > 0. Let g € [-7,7], o € Q, 1ip € [-M, M] be such that

g(ag¢1 ('Eo) -+ 110) = ) min g(a¢1(a:) + ’11).

[z, |a|<F, || < M]

THEOREM . Let hypotheses (H,) — (H4) hold and suppose that h €
L?(Q) and there exists a constant C' > 0 be such that

(3.13) / /Q glaodi () + i(t, ) (z)dtdz < C

for all i € L? with A = 0, |||/ 2 < My and satisfying the conditions
(B1) and (By).

Then boundary value problem (E), (B1),(Bs) has at least two solu-
tions if

(3.14) C< / héi (@) dtdz.
Q
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Proof. Let AG(h) C G be an open bounded set such that the follow-
ing implication

ap < a <, ||z < Mo = u=a¢+1ic AG(h)

holds and such that if w € OAG(h), then necessary u = ag¢1(z) + 4 or
U= ’3’0(1)1(:17) + 14 with H’&“L2 < My Ifu= Ozod)l(l') + @ with ]]ﬁ]]Lz < My,
then, by taking inner product (3.1,) with ¢;, we have

/ / ng(oody(z) + alt, 2))n ()dtdz = p / hebn (z)dtda
Q Q

which, from (3.13) and (3.14), is impossible. If u = Fod1(z) + @ with
llallz2 < My, then, by (3.11), we have

//Qg(’?o%(x) + @)1 (x)dtdz > /‘/(A9 hén (z)dtd

which is also impossible. Thus Dy (L + N, AG(h)) is well defined and
Dr(L + N,AG(h)) = Dg(JP,N,AG(h) NkerL,0),

where Dg is Brouwer degree and PN : L?(Q) — kerL is an operator
defined by

(PoNu)(t, z ———[// u(t, z))o1(x dtdx—// her (z)dtdz]dr(z).
Now, let T : kerL — R be defined by

T(agi(z)) =
Then
Dr(L + N,AG(h) = Dg(JP,N,AG(h) NkerL,0)

= Dg(T(JP.N)T~}, T(AG(h) NkerL),0).

If we let J : ImP, — kerL be the identity map, then the operator
® = 2rT(JP,N)T~! will be defined by

-/ /Q ola1()é (@)ieda — [ /Q heos (a)dtde.

Thus, we have, by (3.13) and (3.14),

B(ao) = [ / glaosi(e)(@)itds ~ [ / h1 (w)dtda < O,

and, by (3.11), we have

(%) = // 9(Hod1(x))d1(x dtdx—// h¢i(z)dtdz > 0.
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Hence, the coincidence degree exists and the corresponding value
|IDL(L + N,AG(h))| = |Dp[JP.N,AG(h) N KerL,0]| = 1.

By Mawhin’s continuation theorem, the problem (E), (Bi), (B2) has at
least one solution in AG(h).
By the additivity of the coincidence degree, we have

0=Dy(L+N,G)=D(L+N,AG(h)))+ Dr(L+ N,G — AG(h))

and hence

|DL(L+ N,G — AG(R))| = 1.
Therefore, (E),(B1),(Bs) has another solution in G — AG(h). This

proves our assertion. )

REMARK. If
1 .
@//Q h(t, z)¢s(z)dtdz < inf g(u),

then the boundary value problem (E)(B;)(Bz) has no solution.
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