Cloning and Molecular Analysis of cDNA Encoding Cycloartenol Synthase from Centella asiatica (L.) Urban

  • Kim Ok-Tae (Department of Biology, Chonnam National University) ;
  • Kim Min-Young (Department of Biology, Chonnam National University) ;
  • Hwang Sung-Jin (Department of Food & Biotechnology, Dongshin University) ;
  • Ahn Jun-Cheul (Department of Life Sciences, Seonam University) ;
  • Hwang Baik (Department of Biology, Chonnam National University, Institute of Plant Resources, Chonnam National University)
  • Published : 2005.02.01

Abstract

cDNA for oxidosqualene cyclase was cloned by a homology-based PCR method and sequenced from Centella asiatica. In a sequences analysis, the putative polypeptide of C. asiatica cycloartenol synthase (CaCYS) deduced from the 2,274 bp nucleotide sequence, consisted of 758 amino acids and had a molecular mass of 86.3 kD. The predicted amino acid sequence exhibited high homology to that of PNX (cycloartenol synthase) from Panax ginseng ($89\%$). Southern blot analysis suggests that CaCYS may be present in one copy of the C. asiatica genome. If methyl jasmonate (MJ) is applied exogenously to plants, not only triterpene saponins are accumulated in tissues, but also it produces effects such as growth inhibition and the promotion of ethylene production. In order to investigate the effect of MJ and thidiazuron (TDZ), a cytokinin that plays a role as an antisenescence agent in several plants, on the level of CaCYS mRNA, we performed northern blot analysis. When MJ is alone treated by adding to culture medium, CaCYS transcripts were inhibited. However, sustained levels of the expression of CaCYS, by adding TDZ to the medium despite MJ treatments, were demonstrated in C. asiatica leaves.

Keywords

References

  1. Iturbe-Ormaetxe, I., K. Haralampidis, K. Papadopoulou, and A. E. Osbourn (2003) Molecular cloning and characterization of triterpene synthases from Medicago truncatula and Lotus japonicus. Plant Mol. Biol. 51: 731-743 https://doi.org/10.1023/A:1022519709298
  2. Bach, T. J. and P. Benveniste (1997) Cloning of cDNAs or genes encoding enzymes of sterol biosynthesis from plants and other eukaryotes: Heterologous expression and complementation analysis of mutations for functional characterization. Prog. Lipid Res. 36: 197-226 https://doi.org/10.1016/S0163-7827(97)00009-X
  3. Corey, E. J., S. P. T. Matsuda, and B. Bartel (1993) Isolation of Arabidopsis thaliana encoding cycloartenol synthase by functional expression in a yeast mutant lacking lanosterol synthase by the use of a chromatographic screen. Proc. Natl. Acad. Sci. USA 90: 11628-11632 https://doi.org/10.1073/pnas.90.24.11628
  4. Hayashi, H., N. Hiraoka, Y. Ikeshiro, T. Kushiro, M. Morita, M. Shibuya, and Y. Ebizuka (2000) Molecular cloning and characterization of a cDNA for Glycyrrhiza glabra cycloartenol synthase. Biol. Pharm. Bull. 23: 231-234 https://doi.org/10.1248/bpb.23.231
  5. Kawano, N., K. Ichinose, and Y. Ebizuka (2002) Molecular cloning and functional expression of cDNAs encoding oxidosqualene cyclase from Costus speciosus. Biol. Pharm. Bull. 25: 477-482 https://doi.org/10.1248/bpb.25.477
  6. Kartnig T. (1988) Clinical application of Centella asiatica (L.) Urb. In: L. E. Craker and J. E. Simon (eds.). Recent Advance in Botany. Horticulture and Pharmacology. Vol. 3. Oryx Press, Phoenix
  7. Matsuda, H., T. Morikawa, H. Ueda, and M. Yoshikawa (2001) Medicinal Foodstuffs. XXVII. Saponin constituents Gotu Kola (2): Structures of new ursane- and oleananetype triterpene oligoglycosides, centellasaponin B, C, and D, from Centella asiatica cultivated in Sri Lanka. Chem. Pharm. Bull. 49: 1368-1371 https://doi.org/10.1248/cpb.49.1368
  8. Brinkhaus, B., M. Lindner, D. Schuppan, and E. G. Hahn (2000) Chemical, pharmacological and clinical profile of the east Asian medical plant Centella asiatica. Phytomedicine 7: 427-448 https://doi.org/10.1016/S0944-7113(00)80065-3
  9. Chattopadhyay, S., S. Farkya, A. K. Srivastava, and V. S. Bisaria (2002) Bioprocess considerations for production of secondary metabolites by plant cell suspension cultures. Biotechnol. Bioprocess Eng. 7: 138-149 https://doi.org/10.1007/BF02932911
  10. Hwang, S. J., K. S. Kim, B. S. Pyo, and B. Hwang (1999) Saponin production by hairy root cultures of Panax ginseng CA Meyer: Influence of PGR and polyamines. Biotechnol. Bioprocess Eng. 4: 309-312 https://doi.org/10.1007/BF02933759
  11. Gundlach, H., M. J. Muller, T. M. Kutchan, and M. H. Zenk (1992) Jasmonic acid is a signal transducer in elicitor- induced plant cell cultures. Proc. Natl. Acad. Sci. USA 89: 2389-2393 https://doi.org/10.1073/pnas.89.6.2389
  12. Yukimine, Y., J. Tabata, Y. Higashi, and Y. Hara (1996) Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat. Biotechnol. 14: 1129-1132 https://doi.org/10.1038/nbt0996-1129
  13. Mandujano-Chavez, A., M. A. Schoenbeck, L. F. Ralston, E. Lozoya-Gloria, and J. Chappell (2000) Differential induction of sesquiterpene metabolism in tobacco cell suspension cultures by methyl jasmonate and fungal elicitor. Arch. Biochem. Biophys. 381: 285-294 https://doi.org/10.1006/abbi.2000.1961
  14. Liu, C., Y. Wang X. Xu, F. Ouyang, H. Ye, and G. Li (1999) Improvement of artemisinin accumulation in hairy root cultures of Artemisia annua L by fungal elicitor. Bioprocess Eng. 20: 161-164
  15. Satler, S. O. and K. V. Thimann (1981) Le jasmonate de methyle: Nouveau et puissant promoteur de la senescence des feuilles. C. R. Acad. Sci. S. 293: 735-740
  16. Weidhase, R. A., J. Lehmann, H. Kramell, G. Sembder, and B. Parthier (1987) Degradation of ribulose-1,5- biphosphate carboxylase and chlorophyll in senescing barley leaf segments tirggered by jasmonic acid methyl ester and counteraction by cytokinin. Physiol. Plant. 69: 161-166 https://doi.org/10.1111/j.1399-3054.1987.tb01961.x
  17. Saniewski, M., J. Nowacki, and J. Czapski (1987) The effect of methyl jasmonate on ethylene production and ethylene-forming enzyme activity in tomatoes. J. Plant. Physiol. 129: 199-203
  18. Gamborg, O. L., R. A. Miller, and K. Ojima (1968) Nutrient requirements of suspension culture of soybean root cells. Exp. Cell. Res. 50: 195-202 https://doi.org/10.1016/0014-4827(68)90403-5
  19. Kim, O. T., M. Y. Kim, M. H. Hong, J. C. Ahn, and B. Hwang (2002) Stimulation of asiaticoside accumulation in the whole plant cultures of Centella asiatica (L.) Urban by elicitors. Plant Cell Rep. 23: 339-344 https://doi.org/10.1007/s00299-004-0826-7
  20. Frohman M. A., M. K. Dush, and G. R. Martin (1988) Rapid production of full-length cDNAs from rare transcripts: Amplification using a single gene-specific oligonucleotide primer. Proc. Natl. Acad. Sci. USA 85: 8998-9002 https://doi.org/10.1073/pnas.85.23.8998
  21. Kushiro, T., M. Shibuya, and Y. Ebizuka (1998) Betaamyrin synthase: Cloning of oxidosqualene cyclase that catalyzes the formation of the most popular triterpene among higher plants. Eur. J. Biochem. 256: 238-244 https://doi.org/10.1046/j.1432-1327.1998.2560238.x
  22. Page R. D. M. (1996) TreeView: An application to display phylogenetic trees on personal computer. Compt. Appli. Biosci. 12: 357-358
  23. Doyle, J. J. and J. L. Doyle (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19:11-15
  24. Sambrook, J., E. F. Fritsch, and T. Maniatis (1989) Molecular Cloing: A Laboratory Manual. 2nd ed., Cold spring Harbor Laboratory Press, Cold Spring Harbor, NY, USA
  25. Abe, I. and G. D. Prestwich (1995) Identification of the active site of vertebrate oxidosqualene cyclase. Lipids 30: 231-234 https://doi.org/10.1007/BF02537826
  26. Poralla, K., A. Hewelt, G. D. Prestwich, I. Abe, I. Reipen, and G. Sprenger (1994) A specific amino acid repeat in squalene and oxidosqualene cyclases. Trends Biochem. Sci. 19: 157-158 https://doi.org/10.1016/0968-0004(94)90276-3
  27. Thompson, J. D., D. G. Higgins, and T. J. Gibson (1994) CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680 https://doi.org/10.1093/nar/22.22.4673
  28. Corey, E. J., H. Cheng, C. H. Baker, S. P. T. Matsuda, D. Li, and X. Song (1997) Methology for the preparation of pure recombinant S. cerevisiae lanosterol synthase using a baculovirus expression system. Evidence that oxirane cleavage and A-ring formation are concerted in the biosynthesis of lanosterol from 2,3-oxidosqualene. J. Am. Chem. Soc. 119: 1277-1288 https://doi.org/10.1021/ja963227w
  29. Wentzinger, L. F., T. J. Bach, and M. A. Hartmann (2002) Inhibition of squalene synthase and squalene epoxidase in Tobacco cells triggers an up-regulation of 3-hydroxy-3- methylglutaryl coenzyme a reductase. Plant Physiol. 130: 334-346 https://doi.org/10.1104/pp.004655
  30. Aoyagi, H., Y. Kobayashi, K. Yamada, K. Yokoyama, K. Kusakari, and H. Tanaka (2001) Efficient production of saikosaponins in Bupleurum falcatum root fragments combined with signal transducers. Appl. Microbiol. Biotechnol. 57: 482-488 https://doi.org/10.1007/s002530100819
  31. Lu, M. B., H. L. Wong, and W. L. Teng (2001) Effects of elicitation on the production of saponin in cell culture of Panax ginseng. Plant Cell Rep. 20: 674-677 https://doi.org/10.1007/s002990100378
  32. Hayashi, H., P. Y. Huang, and K. Inoue (2003) Upregulation of soyasaponin biosynthesis by methyl jasmonate in cultured cells of Glycyrrhiza glabra. Plant Cell Physiol. 44: 404-411 https://doi.org/10.1093/pcp/pcg054
  33. Suzuki, H., L. Achnine, R. Xu, S. P. T. Matsuda, and R. A. Dixon (2002) A genomic approach to the early stages of triterpene saponin biosynthesis in Medicago truncatula. The Plant J. 32:1033-1048 https://doi.org/10.1046/j.1365-313X.2002.01497.x