Oxidative Inactivation of Peroxiredoxin Isoforms by H2O2 in Pulmonary Epithelial, Macrophage, and other Cell Lines with their Subsequent Regeneration

폐포상피세포, 대식세포를 비롯한 각종 세포주에서 H2O2에 의한 Peroxiredoxin 동위효소들의 산화에 따른 불활성화와 재생

  • Oh, Yoon Jung (Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine Suwon) ;
  • Kim, Young Sun (Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine Suwon) ;
  • Choi, Young In (Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine Suwon) ;
  • Shin, Seung Soo (Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine Suwon) ;
  • Park, Joo Hun (Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine Suwon) ;
  • Choi, Young Hwa (Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine Suwon) ;
  • Park, Kwang Joo (Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine Suwon) ;
  • Park, Rae Woong (Department of Medical Informatics, Ajou University School of Medicine Suwon) ;
  • Hwang, Sung Chul (Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine Suwon)
  • 오윤정 (아주대학교 의과대학 호흡기 내과학교실) ;
  • 김영선 (아주대학교 의과대학 호흡기 내과학교실) ;
  • 최영인 (아주대학교 의과대학 호흡기 내과학교실) ;
  • 신승수 (아주대학교 의과대학 호흡기 내과학교실) ;
  • 박주헌 (아주대학교 의과대학 호흡기 내과학교실) ;
  • 최영화 (아주대학교 의과대학 호흡기 내과학교실) ;
  • 박광주 (아주대학교 의과대학 호흡기 내과학교실) ;
  • 박래웅 (아주대학교 의과대학 의료정보학과) ;
  • 황성철 (아주대학교 의과대학 호흡기 내과학교실)
  • Received : 2004.09.20
  • Accepted : 2004.12.14
  • Published : 2005.01.30

Abstract

Background : Peroxiredoxins (Prxs) are a relatively newly recognized, novel family of peroxidases that reduce $H_2O_2$ and alkylhydroperoxide into water and alcohol, respectively. There are 6 known isoforms of Prxs present in human cells. Normally, Prxs exist in a head-to-tail homodimeric state in a reduced form. However, in the presence of excess $H_2O_2$, it can be oxidized on its catalytically active cysteine site into inactive oxidized forms. This study surveyed the types of the Prx isoforms present in the pulmonary epithelial, macrophage, endothelial, and other cell lines and observed their response to oxidative stress. Methods : This study examined the effect of exogenous, excess $H_2O_2$ on the Prxs of established cell lines originating from the pulmonary epithelium, macrophages, and other cell lines, which are known to be exposed to high oxygen partial pressures or are believed to be subject to frequent oxidative stress, using non-reducing SDS polyacrylamide electrophoresis (PAGE) and 2 dimensional electrophoresis. Result : The addition of excess $H_2O_2$ to the culture media of the various cell-lines caused the immediate inactivation of Prxs, as evidenced by their inability to form dimers by a disulfide cross linkage. This was detected as a subsequent shift to its monomeric forms on the non-reducing SDS PAGE. These findings were further confirmed by 2 dimensional electrophoresis and immunoblot analysis by a shift toward a more acidic isoelectric point (pI). However, the subsequent reappearance of the dimeric Prxs with a comparable, corresponding decrease in the monomeric bands was noted on the non-reducing SDS PAGE as early as 30 minutes after the $H_2O_2$ treatment suggesting regeneration after oxidation. The regenerated dimers can again be converted to the inactivated form by a repeated $H_2O_2$ treatment, indicating that the protein is still catalytically active. The recovery of Prxs to the original dimeric state was not inhibited by a pre-treatment with cycloheximide, nor by a pretreatment with inhibitors of protein synthesis, which suggests that the reappearance of dimers occurs via a regeneration process rather than via the de novo synthesis of the active protein. Conclusion : The cells, in general, appeared to be equipped with an established system for regenerating inactivated Prxs, and this system may function as a molecular "on-off switch" in various oxidative signal transduction processes. The same mechanisms might applicable other proteins associated with signal transduction where the active catalytic site cysteines exist.

배 경 : peroxiredoxins는 거의 모든 생명체에 공통적으로 보존되어 있으며, 최근에 발견된, 특이한 peroxidases로 인체에서 6가지 동위효소가 알려져 있으며, 산화스트레스에 대한 방어역할을 담당하고, $H_2O_2$신호전달 과정에서 중요한 조절 역할을 한다. peroxiredoxin은 $H_2O_2$ 처리 과정 중에서 자신이 산화되어 불활성화 되는데, 산화된 후 다시 재생되는 것으로 보고되나 그 생리적은 의미는 분명하지 않다. 이에 저자들을 폐상 피세포주, 대식세포주, 폐포모세혈관 내피세포주 및 기타 섬유모세포주 들에서 $H_2O_2$ 에 의한 Prx의 산화과정과 재생을 알아보고자 하였다. 방 법 : 수술 환자에서 적출한 정상 폐조직과, 세포주로는 평상시 산화 스트레스에 노출이 많을 것으로 예상되는 세포들로써, 폐포상피세포의 I 형 및 II 형 세포에서 기원한 A549, WI 26, Raw 264.7, Rat2,및 폐포 모세혈관 내피세포주 등을 이용하여 이를 $50{\mu}M$. $100{\mu}M$, $500{\mu}M$$H_2O_2$로 산화시켜 불활성화 한 후, 추적관찰 하였으며, 시간대 별로(0. 10, 30, 60, 120, 240, 480 분) 수확하여, 이를 1차원 non-reducing SDS-PAGE 및 2차원 전기영동로 분리 후, silver stain 과 Western blot으로 분석 하였다. 결 과 : 1. 실험에 사용된 모든 세포주에서, $H_2O_2$ 농도에 비례하여 peroxiredoxin I, II, III 의 불활성화를 관찰할 수 있었고, 10분에 최고로 불활성화되었다. 2. 산화된 이후, 30분경부터 peroxiredoxin 의 재생이 관찰되기 시작 하였으며, 2시간 이후부터 확연하였다. 3. 다시 재생된 peroxiredoxin은 $H_2O_2$투여로서, 다시 불활성화되어, 재생된 Prx 가 활성을 지닌 단백질임을 알 수 있었다. 4. 재생의 속도는 사용된 세포주마다 차이가 있었으며 (A549 >Raw 264.7 >$Rat_2$ >WI26), 단백질 합성억제제인 cycloheximide ($10{\mu}g/ml$) 존재 하에서도 변함 없이 관찰되었다. 결 론 : 세포 내에는 산화되어 불활성화된 peroxiredoxin을 재생하는 체계가 존재 하며, 이는 활성부위 cysteine을 갖는 다른 단백질에도 공통적으로 적용될 수 있는 분자 스위치일 가능성이 높으며, 산화에 의한 신호전달과정이나, 질병 모델에서 Prx 단백의 재생 체계의 이상과 병인에 관한 추가적인 연구가 필요할 것으로 사료된다.

Keywords

References

  1. Lavrovsky Y, Chatterjee B, Clark RA, Roy AK. Role of redox-regulated transcription factors in inflammation, aging and age‐related diseases. Exp Gerontol 2000;35:521-32 https://doi.org/10.1016/S0531-5565(00)00118-2
  2. Abraham E. Nuclear factor-kappaB and its role in sepsis-associated organ failure. J Infect Dis 2003;187(Suppl 2):S364-9 https://doi.org/10.1086/367707
  3. Abraham E, Arcaroli J, Carmody A, Wang H, Tracey KJ. HMG-1 as a mediator of acute lung inflammation. J Immunol 2000;165:2950-4 https://doi.org/10.4049/jimmunol.165.6.2950
  4. Abraham E, Carmody A, Shenkar R, Arcaroli J. Neutrophils as early immunologic effectors in hemorrhage-or endotoxemia-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2000;279:L1137-45 https://doi.org/10.1152/ajplung.2000.279.6.L1137
  5. Jones RD, Hancock JT, Morice AH. NADPH oxidase: a universal oxygen sensor? Free Radic Biol Med 2000;29:416-24 https://doi.org/10.1016/S0891-5849(00)00320-8
  6. Dhaunsi GS, Paintlia MK, Kaur J, Turner RB. NADPH oxidase in human lung fibroblasts. J Biomed Sci 2004;11:617-22 https://doi.org/10.1007/BF02256127
  7. Marshall C, Mamary AJ, Verhoeven AJ, Marshall BE. Pulmonary artery NADPH-oxidase is activated in hypoxic pulmonary vasoconstriction. Am J Respir Cell Mol Biol 1996;15:633-44 https://doi.org/10.1165/ajrcmb.15.5.8918370
  8. Griendling KK. Novel NAD(P)H oxidases in the cardiovascular system. Heart 2004;90:491-3 https://doi.org/10.1136/hrt.2003.029397
  9. Stone JR. An assessment of proposed mechanisms for sensing hydrogen peroxide in mammalian systems. Arch Biochem Biophys 2004;422:119-24 https://doi.org/10.1016/j.abb.2003.12.029
  10. Rhee SG, Chang TS, Bae YS, Lee SR, Kang SW. Cellular regulation by hydrogen peroxide. J Am Soc Nephrol 2003;14:S211-5 https://doi.org/10.1097/01.ASN.0000077404.45564.7E
  11. Kaushal GP, Liu L, Kaushal V, Hong X, Melnyk O, Seth R, et al. Regulation of caspase-3 and -9 activation in oxidant stress to RTE by forkhead transcription factors, Bcl-2 proteins and MAP kinases. Am J Physiol Renal Physiol 2004;287:F1258-68 https://doi.org/10.1152/ajprenal.00391.2003
  12. Forman HJ, Torres M. Redox signaling in macrophages. Mol Aspects Med 2001;22:189-216 https://doi.org/10.1016/S0098-2997(01)00010-3
  13. Chae HZ, Kim HJ, Kang SW, Rhee SG. Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res Clin Pract 1999;45:101-12 https://doi.org/10.1016/S0168-8227(99)00037-6
  14. Chae HZ, Kim IH, Kim K, Rhee SG. Cloning, sequencing, and mutation of thiol-specific antioxidant gene of Saccharomyces cerevisiae. J Biol Chem 1993;268:16815-21
  15. Chae HZ, Rhee SG. A thiol-specific antioxidant and sequence homology to various proteins of unknown function. Biofactors 1994;4:177-80
  16. Hofmann B, Hecht HJ, Flohe L. Peroxiredoxins. Biol Chem 2002;383:347-64 https://doi.org/10.1515/BC.2002.040
  17. Chae HZ, Kang SW, Rhee SG. Isoforms of mammalian peroxiredoxin that reduce peroxides in presence of thioredoxin. Methods Enzymol 1999;300:219-26 https://doi.org/10.1016/S0076-6879(99)00128-7
  18. Chae HZ, Uhm TB, Rhee SG. Dimerization of thiolspecific antioxidant and the essential role of cysteine 47. Proc Natl Acad Sci U S A 1994;91:7022-6
  19. Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG. Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci U S A 1994;91:7017-21
  20. Yang KS, Kang SW, Woo HA, Hwang SC, Chae HZ, Kim K, et al. Inactivation of human peroxiredoxin I during catalysis as the result of the oxidation of the catalytic site cysteine to cysteine‐sulfinic acid. J Biol Chem 2002;277:38029-36 https://doi.org/10.1074/jbc.M206626200
  21. Woo HA, Kang SW, Kim HK, Yang KS, Chae HZ, Rhee SG. Reversible oxidation of the active site cysteine of peroxiredoxins to cysteine sulfinic acid: immunoblot detection with antibodies specific for the hyperoxidized cysteine-containing sequence. J Biol Chem 2003;278:47361-4 https://doi.org/10.1074/jbc.C300428200
  22. Woo HA, Chae HZ, Hwang SC, Yang KS, Kang SW, Kim K, et al. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 2003;300:653-6 https://doi.org/10.1126/science.1080273
  23. Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature 2000;408:239-47 https://doi.org/10.1038/35041687
  24. Chang TS, Cho CS, Park S, Yu S, Kang SW, Rhee SG. Peroxiredoxin III, a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J Biol Chem 2004;278:41975-84
  25. Cemerski S, van Meerwijk JP, Romagnoli P. Oxidative-stress-induced T lymphocyte hyporesponsiveness is caused by structural modification rather than proteasomal degradation of crucial TCR signaling molecules. Eur J Immunol 2003;33:2178-85 https://doi.org/10.1002/eji.200323898
  26. Rhee SG, Kang SW, Netto LE, Seo MS, Stadtman ER. A family of novel peroxidases, peroxiredoxins. Biofactors 1999;10:207-9 https://doi.org/10.1002/biof.5520100218
  27. Rhee SG, Kang SW, Chang TS, Jeong W, Kim K. Peroxiredoxin, a novel family of peroxidases. IUBMB Life 2001;52:35-41 https://doi.org/10.1080/15216540252774748
  28. Hermanns MI, Unger RE, Kehe K, Peters K, Kirkpatrick CJ. Lung epithelial cell lines in coculture with human pulmonary microvascular endothelial cells: development of an alveolo-capillary barrier in vitro. Lab Invest 2004;84:736-52 https://doi.org/10.1038/labinvest.3700081
  29. Rabilloud T, Berthier R, Vincon M, Ferbus D, Goubin G, Lawrence JJ. Early events in erythroid differentiation: accumulation of the acidic peroxidoxin (PRP/TSA/NKEF-B). Biochem J 1995;312:699-705 https://doi.org/10.1042/bj3120699
  30. Kim HS, Kang SW, Rhee SG, Clerch LB. Rat lung peroxiredoxins I and II are differentially regulated during development and by hyperoxia. Am J Physiol Lung Cell Mol Physiol 2001;280:L1212-7 https://doi.org/10.1152/ajplung.2001.280.6.L1212
  31. Noh DY, Ahn SJ, Lee RA, Kim SW, Park IA, Chae HZ. Overexpression of peroxiredoxin in human breast cancer. Anticancer Res 2001;21:2085-90
  32. Kim HJ, Chae HZ, Kim YJ, Kim YH, Hwangs TS, Park EM, et al. Preferential elevation of Prx I and Trx expression in lung cancer cells following hypoxia and in human lung cancer tissues. Cell Biol Toxicol 2003;19:285-98 https://doi.org/10.1023/B:CBTO.0000004952.07979.3d
  33. Wang MX, Wei A, Yuan J, Clippe A, Bernard A, Knoops B, et al. Antioxidant enzyme peroxiredoxin 5 is upregulated in degenerative human tendon. Biochem Biophys Res Commun 2001;284:667-73 https://doi.org/10.1006/bbrc.2001.4991
  34. Kinnula VL, Lehtonen S, Kaarteenaho-Wiik R, Lakari E, Paakko P, Kang SW, et al. Cell specific expression of peroxiredoxins in human lung and pulmonary sarcoidosis. Thorax 2002;57:157-64 https://doi.org/10.1136/thorax.57.2.157
  35. Kinnula VL, Lehtonen S, Sormunen R, Kaarteenaho-Wiik R, Kang SW, Rhee SG, et al. Overexpression of peroxiredoxins I, II, III, V, and VI in malignant mesothelioma. J Pathol 2002;196:316-23 https://doi.org/10.1002/path.1042
  36. Lee TH, Kim SU, Yu SL, Kim SH, Park do S, Moon HB, et al. Peroxiredoxin II is essential for sustaining life span of erythrocytes in mice. Blood 2003;101: 5033-8 https://doi.org/10.1182/blood-2002-08-2548
  37. Moon EY, Han YH, Lee DS, Han YM, Yu DY. Reactive oxygen species induced by the deletion of peroxiredoxin II (PrxII) increases the number of thymocytes resulting in the enlargement of PrxIInull thymus. Eur J Immunol 2004;34:2119-28 https://doi.org/10.1002/eji.200424962
  38. Jiang Z, Seo JY, Ha H, Lee EA, Kim YS, Han DC, et al. Reactive oxygen species mediate TGF-beta1-induced plasminogen activator inhibitor-1 upregulation in mesangial cells. Biochem Biophys Res Commun 2003;309:961-6 https://doi.org/10.1016/j.bbrc.2003.08.102
  39. Fajardo I, Svensson L, Bucht A, Pejler G. Increased levels of hypoxia-sensitive proteins in allergic airway inflammation. Am J Respir Crit Care Med 2004;170:477-84 https://doi.org/10.1164/rccm.200402-178OC
  40. Dierick JF, Wenders F, Chainiaux F, Remacle J, Fisher AB, Toussaint O. Retrovirally mediated over-expression of peroxiredoxin VI increases the survival of WI-38 human diploid fibroblasts exposed to cytotoxic doses of tert-butylhydroperoxide and UVB. Biogerontology 2003;4:125-31 https://doi.org/10.1023/A:1024154024602
  41. Niimura Y, Poole LB, Massey V. Amphibacillus xylanus NADH oxidase and Salmonella typhimurium alkylhydroperoxide reductase flavoprotein components show extremely high scavenging activity for both alkyl hydroperoxide and hydrogen peroxide in the presence of S. typhimurium alkyl-hydroperoxide reductase 22-kDa protein component. J Biol Chem 1995;270:25645-50 https://doi.org/10.1074/jbc.270.43.25645
  42. Barr SD, Gedamu L. Role of peroxidoxins in Leishmania chagasi survival: evidence of an enzymatic defense against nitrosative stress. J Biol Chem 2003;278:10816-23 https://doi.org/10.1074/jbc.M212990200
  43. Kawazu S, Tsuji N, Hatabu T, Kawai S, Matsumoto Y, Kano S. Molecular cloning and characterization of a peroxiredoxin from the human malaria parasite Plasmodium falciparum. Mol Biochem Parasitol 2000;109:165-9 https://doi.org/10.1016/S0166-6851(00)00243-7
  44. Paca-uccaralertkun S, Chuchottaworn C. Kat G mutations in isoniazid resistant Mycobacterium tuberculosis isolates from Thai patients. Southeast Asian J Trop Med Public Health 1997;28:387-90
  45. Koshkin A, Zhou XT, Kraus CN, Brenner JM, Bandyopadhyay P, Kuntz ID, et al. Inhibition of Mycobacterium tuberculosis AhpD, an element of the peroxiredoxin defense against oxidative stress. Antimicrob Agents Chemother 2004;48:2424-30 https://doi.org/10.1128/AAC.48.7.2424-2430.2004