Prediction of Land-cover Change in the Gongju Areas using Fuzzy Logic and Geo-spatial Information

퍼지 논리와 지리공간정보를 이용한 공주지역 토지피복 변화 예측

  • Jang, Dong-Ho (National Research Laboratory, Kongju National University)
  • 장동호 (공주대학교 국가지정연구실)
  • Received : 2005.09.13
  • Accepted : 2005.10.31
  • Published : 2005.12.31

Abstract

In this study, we tried to predict the change of future land-cover and relationships between land-cover change and geo-spatial information in the Gongju area by using fuzzy logic operation. Quantitative evaluation of prediction models was carried out using a prediction rate curve using. Based on the analysis of correlations between the geo-spatial information and land-cover change, the class with the highest correlation was extracted. Fuzzy operations were used to predict land-cover change and determine the land-cover prediction maps that were the most suitable. It was predicted that in urban areas, the urban expansion of old and new towns would occur centering on the Gem-river, and that urbanization of areas along the interchange and national roads would also expand. Among agricultural areas, areas adjacent to national roads connected to small tributaries of the Gem-river and neighboring areas would likely experience changes. Most of the forest areas are located in southeast and from this result we can guess why the wide chestnut-tree cultivation complex is located in these areas and the possibility of forest damage is very high. As a result of validation using the prediction rate curve, it was indicated that among fuzzy operators, the maximum fuzzy operator was the most suitable for analyzing land-cover change in urban and agricultural areas. Other fuzzy operators resulted in the similar prediction capabilities. However, in the prediction rate curve of integrated models for land-cover prediction in the forest areas, most fuzzy operators resulted in poorer prediction capabilities. Thus, it is necessary to apply new thematic maps or prediction models in connection with the effective prediction of changes in the forest areas.

Keywords

References

  1. 공주시, 2004 , 공주시 통계연보
  2. 국토개발연구원, 1998, 토지이용계획을 위한 GIS활용방안연구
  3. 김경아, 1998 , 수도권 자연보존 권역에서 토지이용 규제가 지피변화에 미치는 영향, 서울대학교석사학위논문
  4. 김대식, 1999, 지리정보시스템과 다기준 평가법을 이용한 농촌중심마을 모의 모형의 개발에 관한 연구, 서울대학교 박사학위논문
  5. 김홍규, 양인태, 윤영훈, 조흥묵, 1999, 퍼지감독분류 결과를 이용한 토지피복 변화탐지 기법, 대한토목학회논문집, 19(6), 499-502
  6. 김훈희, 이진희, 2001 , 토지이용변화와 확률모형 구축 및 적용에 관한 연구, 대한국토.도시계획학회지, 36(4), 1-17
  7. 박노욱 1999, 다중 지구과학 자료 공간 통합 정보의 분석, 서울대학교 석사학위 논문
  8. 박노욱, 지광훈, Chang-Jo F. Chung, 권병두,2003, 퍼지이론을 이용한 GIS 기반 자료유도형 지질자료 통합의 이론과 응용, 자원환경지질, 36(3), 243-255
  9. 박병욱, 1996, Landsat TM 자료를 이용한 광주시 환경변화 분석, 지형공간정보학회지, 4(1), 31-41
  10. 박성미, 1997 , 원격탐사 및 GIS 기법을 이용한 지표 환경 분석 연구 : 하남지역의 응용사례, 서울대학교 석사학위 논문
  11. 서창완, 전성우, 1998, 원격탐사와 GIS기법을 이용한 접경지역 토지피복연구, 한국환경영향평가학회지, 7(1), 11-22
  12. 이기원, 박성미,지광훈, 1996, Landsat자료를 이한 도시환경 변화추출에서의 주성분분석과 퍼지집합연상의 응용, 대한원격탐사학회지, 12(3),257-270
  13. 장동호, 2005, 지표변화와 지리공간정보와의 연관성 분석을 통한 공주지역 지표환경 변화 분석, 대한지리학회지, 40(2), 63-77
  14. 장동호, 김만규, 2003, IKONOS 영상자료를 이용한 토지피복도 개선, 한국GIS학회지, 11(2), 101-117
  15. 장동호, 지광훈 ,이현영, 2002, 퍼지논리연산을 이용한 안면도 지표환경 변화 예측, 대한지리학회지, 37(4), 371-384
  16. 전형섭, 임승현, 조기성, 2003, 토지피복 변화탐지를 위한 위성영상의 적용에 관한 연구, 공학연구, 34,105-113
  17. An, P., Moon, W.M. and Rencz, A., 1991, Application of fuzzy set theory to integrated mineral exploration, Canadian Journal of ExpIoration Grophysics, 27, 1-11
  18. Banai, R., 1993, Fuzziness in geographical information systems: contribution from the analytical hierarchy process. International Journal of Geographical Information Systems, 7, 315-329 https://doi.org/10.1080/02693799308901964
  19. Batty, M. and Yichun, X, 1994, Modeling inside GIS: Part2. Selecting and calibrating urban models using Arc/Info, International Journal of Geographical Information Systems, 8(5), 429.450
  20. Batty, M., Yichun, X. and Zhanli, S, 1999, Modeling urban dynamics through GISbased cellular automata, Computers, Environment and Urban Systems, 23, 205-233 https://doi.org/10.1016/S0198-9715(99)00015-0
  21. Bonham-Carter, G. F., 1994, Geographic information systems for geoscientists: modelling with GIS, Pergamon press, Kidlington, 398
  22. Bonham-Carter, G.F., Agterberg, F.P. and Wright, D.F., 1988, Integration of geological data sets for gold exploration in Nova Scotia, Photogrammetric Engineering & Remote Sensing, 54, 1585-1592
  23. Carranza, E.J.M. and Hale, M., 2001, Geologically-constrained fuzzy mapping of gold mineralization potential, Baguio district, Philippines, Natural Resources Research, 10, 125-136 https://doi.org/10.1023/A:1011500826411
  24. Choi, S.-W., Moon, W.M. and Choi, S.-G., 2000, Fuzzy logic fusion of W-Mo exploraton data from Seobyeog-ri, Korea, Geosciences Journal, 4, 43-52 https://doi.org/10.1007/BF02910126
  25. Chung, F. C. and Fabbri, A. G., 2003, Validation of spatial prediction models for landslide hazard mapping. Natural Hazards, 30, 451-472 https://doi.org/10.1023/B:NHAZ.0000007172.62651.2b
  26. Chung, F.C. and Fabbri, A.G., 1999, Probability prediction models for landslide hazard mapping, Photogrammetric Engineering & Remote Sensing, 65(12), 1389-1399
  27. Heiko, B., Paul, W.B. and Wolfgana K., 1998, Cellular automata models for vegetation dynamics, Ecological Modelling, 107, 113-125 https://doi.org/10.1016/S0304-3800(97)00202-0
  28. Jang, D.H. and Chung, F.C.(a), 2004, Updating land cover classification using integration of multi-spectral and temporal remotely sensed data, Journal of the Korean Geographical Society, 39(5), 786-803
  29. Jang, D.H. and Chung, F.C.(b), 2004, Integration of multi-spectral remote sensing images and GIS thematic data for supervised land cover classification, Korean Journal of Remote Sensing, 20(5), 315-327
  30. Moon, W.M., 1990, Integration of geophysical and geological data using evidential belief function, Geoscience and Remote Sensing, 28, 711-720 https://doi.org/10.1109/TGRS.1990.572988
  31. Moon, W.M., 1998, Integration and fusion of geological exploration data: a theoretical reivew of fuzzy logic approach, Geosciences Journal, 2, 175-183 https://doi.org/10.1007/BF02910163
  32. Solaiman, B., Pierce, L.E. and Ulaby, F.T., 1999, Multisensor data fusion using fuzzy concepts: application to land-cover classification using ERS-1/JERS-1 SAR composites,. Geoscience and Remote Sensing, 37(3), 1316 -1329 https://doi.org/10.1109/36.763295
  33. Takeshi, A. and Tetsuya, A., 2004, Empirical analysis for estimating land use transition potential functions-case in the Tokyo metropolitan region, Computer, Environment and Urban Systems, 28(1), 65-84 https://doi.org/10.1016/S0198-9715(02)00043-1
  34. Yan, L. and Stuart, R.P., 2003, Modelling urban development with cellular automata incorporating fuzzy-set approaches, Computers, Environment and Urban Systems, 27(6), 637-658 https://doi.org/10.1016/S0198-9715(02)00069-8
  35. Yeqiao, W. and Xinsheng, Z., 2001, A dynamic modeling approach to simulating socioeconomic effects on landscape changes, Ecological Modeling, 140, 141-162 https://doi.org/10.1016/S0304-3800(01)00262-9
  36. Zadeh, L.A., 1965, Fuzzy sets. Information and Control, 8, 338-353 https://doi.org/10.1016/S0019-9958(65)90241-X