A Variable Neighbourhood Descent Algorithm for the Redundancy Allocation Problem

  • Liang, Yun-Chia (Department of Industrial Engineering and Management, Yuan Ze University) ;
  • Wu, Chia-Chuan (Department of Industrial Engineering and Management, Yuan Ze University)
  • Published : 2005.06.30

Abstract

This paper presents the first known application of a meta-heuristic algorithm, variable neighbourhood descent (VND), to the redundancy allocation problem (RAP). The RAP, a well-known NP-hard problem, has been the subject of much prior work, generally in a restricted form where each subsystem must consist of identical components. The newer meta-heuristic methods overcome this limitation and offer a practical way to solve large instances of the relaxed RAP where different components can be used in parallel. The variable neighbourhood descent method has not yet been used in reliability design, yet it is a method that fits perfectly in those combinatorial problems with potential neighbourhood structures, as in the case of the RAP. A variable neighbourhood descent algorithm for the RAP is developed and tested on a set of well-known benchmark problems from the literature. Results on 33 test problems ranging from less to severely constrained conditions show that the variable neighbourhood descent method provides comparable solution quality at a very moderate computational cost in comparison with the best-known heuristics. Results also indicate that the VND method performs with little variability over random number seeds.

Keywords