References
- Berry, M.J .. & Linoff, G. (1997), Data Mining Techniques. John Wiley and Sons, New York, USA
- Buchanan, B. (2004), Money laundering global obstacle. Research in International Business and Finance, 18, 115-127 https://doi.org/10.1016/j.ribaf.2004.02.001
- Chen, M.e., & Huang, S.H. (2003), Credit scoring and rejected instances reassigning through evolutionary computation techniques. Expert System with Applications, 24, 433-441 https://doi.org/10.1016/S0957-4174(02)00191-4
- Desai,V., Crook,J., & Overstreet, G. (1996), A comparison of neural networks and linear scoring models in credit union environment. European Journal of Operations Management, 95, 24-37 https://doi.org/10.1016/0377-2217(95)00246-4
- Jo, D.H.(1993), A study of Management of Foreign Money in Korea, Hankuk Univ. of Foreign Studies., M.S. thesis, Korea
- Jung, S'y'(2002), A study of Visual Data Mining Based on link Analysis for insurance Fraud detection, Soogsil Univ., M.S. thesis, Korea
- Kang,H.e., Han, S.T. Choi, J.H., Kim, £.S., & Kim, M.K.(2002), Methodology and Application of Data Mining, Freedom Academy, Seoul, Korea
- Kim, J.S.(2001), Credit Scoring Model Using Bayesian Method, Korea Univ., M.S. thesis, Korea
- Kim, S.B.(200 1), A Study on the Characteristic of Credit Cards Customer for Building Credit Scoring System, Korea Univ., M.S. thesis, Korea
- Kim, Y.S. & Sohn, S. y. (2003), Managing loan customers using misclassification patterns of credit scoring model. Expert system with Applications 57(10),482-488
- Koker, I. (2002), Money Laundering Trends in South Africa. Journal of Money Laundering Control, 6( 1), 27 -41 https://doi.org/10.1108/13685200310809383
- Kuo-Ellen (2002), Fraud In Documentary Credit Transaction. Journal of Money Laundering Control, 5(3), 192-207 https://doi.org/10.1108/eb027304
- Lee, S.B.(2001), Logistic Analsys for Credit Scoring, Sookmyung Women's Univ., M.S. thesis, Korea
- Philippsohn, S. (2001), Money Laundering on the Internet. Computers & Security, 20, 485-490 https://doi.org/10.1016/S0167-4048(01)00606-X
- Rahman, F. & Sheikn, A. (2002), The Underground Banking Systems and their Impact on Control of Money Laundering. Journal of Money laundering Control, 6(1), 42-45 https://doi.org/10.1108/13685200310809392
- Rezaee, Z. (2003), Causes, consequences, and deterence of financial statement fraud. Critical Perspectives on Accounting, 16(3), 277-298 https://doi.org/10.1016/S1045-2354(03)00072-8
-
Sohn, SY & Shin, H.W.
$(1997)^{a}$ , Data Mining for Road Traffic Accident Type Classification, Korean Society of Transportation. 6(4), pp.187-194 -
Sohn, S.Y & Shin, H.W.
$(1997)^{b}$ , Comparison of Data Mining Classification Algorithms for Categorical Feature Variables, 12(4), 551- 556 - Westphal, e. (998), Data Mining Solutions. John Wiley and Sons, New York, USA