References
- E. H. Brito, Nonlinear initial boundary value problems, Nonlinear Anal. 11 (1987), no. 1, 125-137 https://doi.org/10.1016/0362-546X(87)90031-9
- M. M. Cavalcanti, V. N. Domingos Cavalcanti, J. S. Filho, and J. A. Sori- ano, Existence and uniform decay rates for viscoelastic problems with nonlinear boundary damping, Differ. Integral Equ. 14 (2001), no. 1, 85-116
- V. Georgiev and G. Todorova, Existence of a solution of the wave equations with nonlinear damping and source terms, J. Differ. Equations. 109 (1994), 295-308 https://doi.org/10.1006/jdeq.1994.1051
- S. Jiang and J. E. Munoz Rivera, A global existence for the Dirichlet problems in nonlinear n-dimensional viscoelasticity, Differ. Integral Equ. 9 (1996), no. 4, 791-810
- T. Matsuyama, Quasilinear hyperbolic-hyperbolic singular perturbation with no- nmonotone nonlinearity, Nonlinear Anal. Theory Methods Appl. 35 (1999), 589-607 https://doi.org/10.1016/S0362-546X(97)00737-2
- T. Matsuyama and R. Ikehata, On global solutions and energy decay for the wave equations of Kirchhoff type with nonlinear damping terms, J. Math. Anal. Appl. 204 (1996), 729-753 https://doi.org/10.1006/jmaa.1996.0464
- K. Narasimha, Nonlinear vibration of an elastic string, J. Sound Vibration 8 (1968), 134-146 https://doi.org/10.1016/0022-460X(68)90200-9
- J. Y. Park and J. J. Bae, On coupled wave equation of Kirchhoff type with non- linear boundary damping and memory term, Appl. Math. Comput. 129 (2002), no. 1, 87-105 https://doi.org/10.1016/S0096-3003(01)00031-5
- J. Y. Park and J. J. Bae, Uniform decay of solution for wave equation of Kirchhoff type with nonlinear boundary damping and memory term, Nonlinear Anal. Theory Methods Appl. 50 (2002), no. 7, 871-884 https://doi.org/10.1016/S0362-546X(01)00781-7
- R. Torrejon and J. Yong, On a quasilinear wave equation with memory, Nonlinear Anal. Theory Methods Appl. 16 (1991), no. 1, 61-78 https://doi.org/10.1016/0362-546X(91)90131-J