The effect of enamel matrix derivative (EMD) in combination with deproteinized bovine bone material (DBBM) on the early wound healing of rabbit calvarial defects

법랑기질 단백질 유도체와 혼합된 이종골 이식재가 토끼 두개골 결손부 초기 치유에 미치는 영향

  • Kim, You-Seok (Dept, of Periodontology, College of Dentistry, Chosun University) ;
  • Jang, Hyun-Seon (Dept, of Periodontology, College of Dentistry, Chosun University, Oral Biology Research Institute, Chosun University) ;
  • Park, Ju-Chol (Dept. of Oral Histology, College of Dentistry, Chosun University, Oral Biology Research Institute, Chosun University) ;
  • Kim, Heoung-Jung (Dept. of Oral Anatomy, College of Dentistry, Chosun University, Oral Biology Research Institute, Chosun University) ;
  • Lee, Jong-Woo (Dept, of Periodontology, College of Dentistry, Chosun University) ;
  • Kim, Chong-Kwan (Dept. of Periodontology, College of Dentistry, Yonsei University, Research Institute for Periodontal Regeneration, Yonsei University) ;
  • Kim, Byung-Ock (Dept, of Periodontology, College of Dentistry, Chosun University, Oral Biology Research Institute, Chosun University)
  • 김유석 (조선대학교 치과대학 치주과학교실) ;
  • 장현선 (조선대학교 치과대학 치주과학교실, 조선대학교 치과대학 구강생물학연구소) ;
  • 박주철 (조선대학교 치과대학 구강조직학교실, 조선대학교 치과대학 구강생물학연구소) ;
  • 김흥중 (조선대학교 치과대학 구강해부학교실, 조선대학교 치과대학 구강생물학연구소) ;
  • 이종우 (조선대학교 치과대학 치주과학교실) ;
  • 김종관 (연세대학교 치과대학 치주과학교실, 연세대학교 치과대학 치주조직 재생연구소) ;
  • 김병옥 (조선대학교 치과대학 치주과학교실, 조선대학교 치과대학 구강생물학연구소)
  • Published : 2005.03.30

Abstract

치주치료의 가장 중요한 목적은 상실된 치주조직의 형태적, 기능적 재건이다. 법랑기칠 단백질 유도체(enamel matrix derivative: EMD)는 치주 병소에 사용시 상피세포의 증식을 억제하며 치주인대 및 백악아세포를 활성화시켜 무세포성 백악질 및 치주인대와 골조직의 생성을 유도한다고 보고되고 있다. 또한 법랑기질 단백칠 유도체는 골모세포의 증식 및 분화를 촉진시키며 alkaline phosphatase의 활성 및 mineralized nodule의 형성을 촉진시킨다고 보고되고 있다. 이에 본 연구에서는 토끼 두개골 결손부에 법랑기질 단백질 유도체와 이종골 이식재를 이식한 후 골밀도를 방사선학적으로 분석하고, 신생골 형성 및 주변 조직 반응을 조직학적으로 관찰, 평가하고자 하였다. 토끼 두개골에 6mm trephine bur(외경 8mm)를 이용하여 경뇌막에 손상을 주지 않도록 하면서 4개의 결손부를 형성하였다. 아무것도 이식하지 않은 군을 음성 대조군으로, 이종골 이식재 ($Bio-Oss^{(R)}$, Geistlich, Wolhusen, Switzerland)을 이식한 군을 양성 대조군으로 설정하였다. 법랑기질 단백질 유도체 ($Emdogain^{(R)}$, Biora, Inc., Sweden)만 이식한 군과 법랑기질 단백질 유도체와 이종골 이식재를 혼합하여 이식한 군을 설험군으로 설정하였다. 각각의 재료를 이식한 후 비흡수성 차폐막 ($Tefgen^{(R)}$, Lifecore Biomedical, Inc., U.S.A.)을 위치시키고 흡수성 봉합사로 일차봉합을 시행하였다. 각 군당 술 후 1, 2, 4주의 치유기간을 설정하였다. 동물을 희생시킨 후 두개골을 절제하여 먼저 방사선학적인 골밀도측정을 시행한 후 10% formalin에 고정한 후 통법에 따라 조직표본을 제작하여 광학현미경으로 관찰하였다. 1. 방사선학적인 평가에서 1, 2, 4주에 대조군과 법랑기질 단백질 유도체만 이식한 군과 비교해 이종골 이식재만 이식한 군과 이종골 이식재에 법랑기질 단백질 유도체를 이식한 군에서 더 큰 골의 밀도를 보이고 있었다 (P<0.01). 하지만, 동일한 시기에 대조군과 법랑기질 단백질 유도체만 이식한 군과의 차이는 발견할 수 없었으며 (P>0.05), 이종골 이식재만 이식한 군과 이종골 이식재에 법랑기질 단백질 유도체를 이식한 군의 차이 또한 발견할 수 없었다 (P>0.05). 2. 조직학적인 평가에서 1, 2, 4주에 대조군과 법랑기질 단백질 유도체만 이식한 군과 비교해 이종골 이식재만 이식한 군과 이종골 이식재에 법랑기질 단백질 유도체를 이식한군에서 골의 형성이 더 진행됨을 알 수 있었다. 법랑기질 단백질 유도체만 이식한 군이 대조군보다 2주에서 더 많은 신생골을 볼 수 있었으며, 이종골 이식재에 법랑기질 단백질 유도체를 이식한 군이 이종골 이식재만 이식한 군보다 1, 2주에서 더 많은 신생골을 관찰할 수 있었다. 이상의 결과에서 법랑기질 단백질 유도체는 토끼 두개골 결손부 치유단계에서 초기 골 형성을 촉진하는 것으로 사료되며 골 이식시에 법랑기질 단백질 유도체를 적용하는 것은 유용한 술식으로 사료된다.

Keywords

References

  1. Lekholm, U. Adell, R. Lindhe, J.. 'Marginal tissue reactions at osseointegrated titanium fixtures. A cross-sectional retropeetive study.' Int J Oral Maxilofac Surg 1986;15:53-61 https://doi.org/10.1016/S0300-9785(86)80011-4
  2. Reddi, A. H. Weintroub, S. Muthukumaran, N .. 'Biologic principles of bone induction.' Orthopedic Clinics of North Am. 1987;18:207-212
  3. Urist, M. R.. 'Bone: formation by autoinfuction.' Science 1965;150:893-899 https://doi.org/10.1126/science.150.3698.893
  4. Alberius, P, Dahlin, C. Linde, A. 'A roll of osteopromotion in experimental bone grafting to the skull: a study in adult rats using a membrane technique' J Oral and Maxillofac Sug 1992;50:829-834 https://doi.org/10.1016/0278-2391(92)90274-4
  5. Jensen, S. S. Aaboe, M. Pinholt, E. M. et al., 'Tissue reaction and material characteristics of four bone substitutes.' Int J Oral Maxillofac Implants 1996;11:55-66
  6. Lundgren, A. K. Lundgren, D. Sennerby, L. et al, 'Augmentation of skull bone using a bioresorbable barrier supported by autologous bone graft. An intra individual study in the rabbit.' Clinical Oral Implants Research 1997;8:90-95 https://doi.org/10.1034/j.1600-0501.1997.080203.x
  7. Moy, P. K. Lundgren, S. Holmes, R. E. 'Maxillary sinus augmentation: Histomorphometric analysis of graft materials for maxillary sinus floor augmentation.' J Oral Maxillofac Surg 1993;51:857-862 https://doi.org/10.1016/S0278-2391(10)80103-X
  8. Gross, J. S .. 'Bone grafting materials for dental applications: A practical guide.' Compend Contin Educ Dent 1997;18:1013-1018, 1020-1022, 1024
  9. Zitzmann, N. U. Naef, R. Scharer, P.. 'Resorbable versus nonresorbable membranes in combination with Bio-Oss for guided bone regeneration.' Int J Oral Maxillofac Implants. 1997;12:844-852
  10. Hammerle, C. H. F. Karring, T.. 'Guided bone regeneration at oral implant sites.' Periodontology 2000 1998;17:151-175 https://doi.org/10.1111/j.1600-0757.1998.tb00132.x
  11. Hockers, T. Abensur, D. Valentini, P. et al .. 'The Combined use of bioresorbable membranes and xenografts or autografts in the treatment of bone defects around implants. A study in beagle dogs.' Clin Oral Implants Res 1999;10:487-498 https://doi.org/10.1034/j.1600-0501.1999.100607.x
  12. Yildirim, M. Spiekermann, H. Biesterfeld, S. et al.. 'Maxillary sinus augmentation using xenogenic bone substitute material Bio-Oss in combination with venous blood.A histologic and histomorphometric study in humans.' Clin Oral Implants Res 2000;11:217-229 https://doi.org/10.1034/j.1600-0501.2000.011003217.x
  13. Thaller, S. R. Hoyt, J. Borieson, K. et al.. 'Reconstriction of calvarial defects with anorganic bovine bone mineral(Bio-Oss)in a rabbit model.' J Ceaniofac Surg 1993;4:79-84 https://doi.org/10.1097/00001665-199304000-00005
  14. Slotte, C. Lundgren, D .. 'Augmentation of calvarial tissue using non-permeable silicone domes and bovine bone mineral. An experimental study in the rat.' Clinical oral Implants Res. 1999;10: 468-476 https://doi.org/10.1034/j.1600-0501.1999.100605.x
  15. Fong, D. C. Slaby, I. Hammarstrom, L .. 'Amylin, an enamel related protein, transcribed in the cells of epithelial root sheath.' J Bone Miner Res 1996;11:892-898
  16. Hammarstrom, L .. 'Enamel matrix, cementum developmental and regeneration' J Clin periodontol 1997;24:678-684 https://doi.org/10.1111/j.1600-051X.1997.tb00249.x
  17. Hammarstrom, L .. 'The role of enamel matrix proteins in the development of cementum ant periodontal tissue.' Ciba Found Symp 1997;205:246-260
  18. Hammarstrom, L. Heijl, L, Gestrelius, S .. 'Periodontal regeneration in a buccal dehiscence model in monkeys after application of enamel matrix protein.' J Clin Periodontol 1997;24:669-677 https://doi.org/10.1111/j.1600-051X.1997.tb00248.x
  19. Slavkin, H. C, Bringas, P, Bessem, C, et al .. 'Hertwig's epithelial root sheath differentiation and initial cementum and bone formation during long-term organ culture of mouse mandibular first molars using serum-less, chemically-defined medium.' J Periodont Res 1988;23:28-40 https://doi.org/10.1111/j.1600-0765.1988.tb01023.x
  20. Heiji, L. Heden, G. Svardstromm, G. et al .. 'Enamel matrix derivate (EMDOGAIN) in the treatment of intrabony periodontal defects.' J Clin Periodontol 1997;24:705-714 https://doi.org/10.1111/j.1600-051X.1997.tb00253.x
  21. Mellonig, J. T.. 'Enamel matrix derivative for periodontal reconstructive surgery.technique, clinical and histologic case report.' Int J Periodontics Restorative Dent 1999;10:8-19
  22. Ponterio, R Wennstrom, J. Lindhe, J.. 'The use of barrier membranes and enamel enamel matrix proteins in the treatment of angular bone defect.' J Clin periodontol 1999;26:833-840 https://doi.org/10.1034/j.1600-051X.1997.00833.x
  23. Sculean, A. Donas, N. Windisch, P, et al., 'Healing of human intrabony defects following treatment with enamel matrix protein or guided tissue generation.' J Periodont Res 1999;34:310-332 https://doi.org/10.1111/j.1600-0765.1999.tb02259.x
  24. Yukna, R. A. Mellonig,J. T .. 'Histological evaluation of periodontal healing in humans following regenerative therapy with enamel matrix derivative.' J Periodontol 2000;71:752-759 https://doi.org/10.1902/jop.2000.71.5.752
  25. Heard, R H. Mellonig, J. T. Brunsvold, M. A. et al.. 'Clinical evaluation of wound healing following multiple exposure to enamel matrix protein derivative in the treatment of intrabony periodontal defects.' J Periodontal 2000;71:1715-1721 https://doi.org/10.1902/jop.2000.71.11.1715
  26. Heden, G .. 'A case report study of 72 consecutive Emdogaintreated intra bony periodontal defects: Clinical and radiographic finder after 1 year.' Int J Periodontics Restorative Dent 2000;20:127-139
  27. Hoang, A. M. Oates, T. W. Cochran, D. L .. 'In vitro wound healing response to enamel matrix derivative.' J Periodontol 2000;71:1270-1277 https://doi.org/10.1902/jop.2000.71.8.1270
  28. Schwartz, Z. Carnes, D. L. Pulliam, R. et al.. 'Porcine enamel matrix derivative stimulates proliferation but not differentiation of preosteoblastic 2T9 cells, inhibits proliferation and stimulates differentiation of osteoblast-like MG63 cells, and increases proliferation and differentiation of normal human osteoblast NHOst cells. J Periodontol 2000;71:1287-1296 https://doi.org/10.1902/jop.2000.71.8.1287
  29. Boyan, B. D. Weesner, T. C. Lohmann, C. H., et al.. 'pocrine fetal enamel matrix derivate enhance bone formation induced by demineralized freeze derived bone allograft in vivo.' J Periodontol 2000;71:1278-1286 https://doi.org/10.1902/jop.2000.71.8.1278
  30. Kawana, F. Sawae, Y. Sahara, T .. 'Porcine enamel matrix derivative enhances trabecular bone regeneration during wound healing of injured rat femur.' Anat Rec 2001;264:438-446 https://doi.org/10.1002/ar.10016
  31. Sawae, Y. Kawana, F. Sahara, T .. 'Effects of enamel matrix derivative on mineralized tissue formation during bone wound healing in rat parietal bone defects.' Electron Microsc 2002;51:413-423 https://doi.org/10.1093/jmicro/51.6.413
  32. Ripamonti, U. Reddi, A. H .. 'Periodontal regeneration: potential role of bone morphgenetic proteins.' J Periodontal Res. 1994;29:225-235 https://doi.org/10.1111/j.1600-0765.1994.tb01216.x
  33. Lazzara RM .. 'Immediate implant placement into extraction sites: the surgical and restorative advantages.' Int J Periodont Restor Dent. 1989;9:333-343
  34. Becker, W. Becker, B. Heldelsman, M. et al .. 'Guided tissue regeneration for implants paced into extraction sockets :a study in dogs.' J Periodontol 1991 ;62:703-709 https://doi.org/10.1902/jop.1991.62.11.703
  35. Kostopoulos, L. Karring, T .. 'Guided bone regeneration in mandibular defects in rats using a bioresorbable polymer' Clin Oral Imp Res 1994;5:66-74 https://doi.org/10.1034/j.1600-0501.1994.050202.x
  36. Kostopoulos, L. Karring, T. Uragushi, R .. 'Formation of jaw bone tuberosities using 'Guided Tissue Regeneration'. An experimental study in the rat.' Clinical oral Implants Res. 1994;5:245-25337. Lioubavina, N. Kostopoulos, L. Karring, T.. 'Long-term stability of jaw bone tuberosities produced according to the principle of 'Guided Tissue Regeneration'. An experimental study in the rat.' Clinical oral Implants Res. 1999;10:477-486 https://doi.org/10.1034/j.1600-0501.1999.100606.x
  37. Donos, N. Lang, P, Karoussis, K. et al., ' The effect of GBR in combination with deproteinized bovine bone mineral and/ or enamel matrix proteins on the healing of critical-size defects.' Clinical oral Implants Res. 2004;15:101-111 https://doi.org/10.1111/j.1600-0501.2004.00986.x
  38. Simion, M. Scarano, A. Gionso, L .. 'Guided bone regeneration using resorbable and nonresorbable membranes:A comparative histologic stidy in humans.' Int. J. Oral Maxillofac Implants 1996;11:735-742
  39. Kostopoulos, L. Karring, T.. 'Augmentation of rat mandible using the principle of guided tissue regeneration' Clin Oral Imp Res 1994;5:75-82 https://doi.org/10.1034/j.1600-0501.1994.050203.x
  40. Khalid, A .. 'Bone graft substitutes: A comparative qualitative histologic review of current osteoconductive grafting materials.' Int J Oral Maxicclofac Implants 2001;16;105-114
  41. Donos, N. Kostopoulos, L. Karring, T .. 'Augmentation of the mandible by GTR and onlay cortical bone grafting. An experimental study in the rats' Clin Oral Imp Res 2002;13:175-184 https://doi.org/10.1034/j.1600-0501.2002.130208.x
  42. Donos, N. Kostopoulos, L. Karring, T .. 'Alveolar ridge augmentation by combinating autogenous mandibular bone grafts and non-resorbable membranes. An experimental study in the rats' Clin Oral Imp Res 2002;13:185-191 https://doi.org/10.1034/j.1600-0501.2002.130209.x
  43. Hammerle, C. H. F. Chiantella, G. C. Karring, T. et al., 'The effect of a deproteinized bovine bone mineral on bone regeneration around titanium dental implants' Clin Oral Imp Res 1998;9:151-162 https://doi.org/10.1034/j.1600-0501.1998.090302.x
  44. Brookes, S. J. Robinson, C. Kirkham, J. et al .. 'Biochemistry and molecilar biology of amelogenin proteins of developing dental enamel' Arch Oral Biol 1995;20:1-14
  45. Gestrelius, S. Andersson, C. Johansson, A. C .. 'Formulation of enamel matrix derivative for surface coating. Kinetics and cell colonization' J Clin Periodontol 1997;24:678-684 https://doi.org/10.1111/j.1600-051X.1997.tb00249.x
  46. Krebsbach, P, H. Lee, S. K. Matsuki, Y .. 'Fulllength sequence, localization, and chromasomal mapping of ameloblastin' J Biol Chem 1996;271:4431-4435 https://doi.org/10.1074/jbc.271.8.4431
  47. Cerny, R. Slaby. I, Mammarstrom, L. et al .. 'A novel gene expressed in rat ameloblasts codes for proteins with cell binding domains' J Bone Miner Res 1995;11:883-891 https://doi.org/10.1002/jbmr.5650110703
  48. Van der Pauw, M. T. Van der Bas, T. Everts, V. et al.. 'Enamel matrix derived potein stimulates attachment of periodontal ligament fibroblasts and enhances alkaline phosphatase activity and transforming growth factor ${\beta}$1 release of periodontal ligament and gingival fibroblasts.' J Periodontol 2000;71:31-43 https://doi.org/10.1902/jop.2000.71.1.31
  49. Lyngstadaas, S. P. Lundberg, E. Ekdalh, H .. 'Autocrine growth factors in human periodontal ligaments cells cultured on enamel matrix derivative.' J Clin Periodontol 2001;28:181-188 https://doi.org/10.1034/j.1600-051x.2001.028002181.x
  50. Gurpinar, A. Onur, M. A. Cehreli, Z. C. et al., 'Effect of enamel matrix derivative on mouse fibroblasts and marrow stromal osteoblasts.' J Biomater Appl, 2003;18;25-33 https://doi.org/10.1177/0885328203018001003
  51. Schwartz, Z. Carnes, D. L. Pulliam, R.. 'Porcine fetal enamel matrix derivative stimulates proliferation of osteoblast-like MG63 dis, and increases proliferation and differentiation of normal human osteoblast NHOst cells.' J Periodontol 2000;71:1287-1296 https://doi.org/10.1902/jop.2000.71.8.1287
  52. Tokiyasu, Y. Takata, T. Sagin, E. et al., 'Enamel factors regulate expression of genes associated with cementoblast.' J Periodontal 2000;71:1829-1839 https://doi.org/10.1902/jop.2000.71.12.1829
  53. Jiang, J. Fouad, A. F. Safavi, K. E. et al.. 'Effects of enamel matrix derivative on gene expression of primary osteoblasts.' Oral Surg, Oral med, Oral Pathol, Oral Radiol. Endod, 2001;91:95-100 https://doi.org/10.1067/moe.2001.111304
  54. Yoneda, S. Itoh, D. Kuroda, S. et al .. 'The effects of enamel matrix derivative (EMD ) on osteoblastic cells in culture and bone regeneration in a rat skull defect.' J Periodont Res 2003;38;333-342 https://doi.org/10.1034/j.1600-0765.2003.00667.x
  55. Corneline, R. Scarano, A. Piattelli, M. et al., 'Effects of Enamel matrix derivative (EMDOGAIN) on bone defects in rabbit tibias.' J Oral implantol 2004;30;69-73 https://doi.org/10.1563/0.642.1
  56. Stenport, V. Johansson, C .. 'Enamel matrix derivative and titanium implants.' J Clin Periodontol 2003;20:359-363
  57. Casati, M. Z. Sallum, E. A. Nociti, F. H. Jr .. 'Enamel matrix derivative and bone healing after guided bone regeneration in dehiscence-type defects around implants. A histomorphonetric study in dogs.' J Periodontol 2002;73:789-796 https://doi.org/10.1902/jop.2002.73.7.789