DOI QR코드

DOI QR Code

Effect of damage on permeability and hygro-thermal behaviour of HPCs at elevated temperatures: Part 1. Experimental results

  • Gawin, D. (Department of Building Physics and Building Materials, Technical University of Lodz) ;
  • Alonso, C. (Istituto de Ciencias de la Construccion Eduardo Torroja, CSIC) ;
  • Andrade, C. (Istituto de Ciencias de la Construccion Eduardo Torroja, CSIC) ;
  • Majorana, C.E. (Department of Constructions and Transportation Engineering, University of Padua) ;
  • Pesavento, F. (Department of Constructions and Transportation Engineering, University of Padua)
  • Received : 2004.07.22
  • Accepted : 2005.04.02
  • Published : 2005.06.25

Abstract

This paper presents an analysis of some experimental results concerning micro-structural tests, permeability measurements and strain-stress tests of four types of High-Performance Concrete, exposed to elevated temperatures (up to $700^{\circ}C$). These experimental results, obtained within the "HITECO" research programme are discussed and interpreted in the context of a recently developed mathematical model of hygro-thermal behaviour and degradation of concrete at high temperature, which is briefly presented in the Part 2 paper (Gawin, et al. 2005). Correlations between concrete permeability and porosity micro-structure, as well as between damage and cracks' volume, are found. An approximate decomposition of the thermally induced material damage into two parts, a chemical one related to cement dehydration process, and a thermal one due to micro-cracks' development caused by thermal strains at micro- and meso-scale, is performed. Constitutive relationships describing influence of temperature and material damage upon its intrinsic permeability at high temperature for 4 types of HPC are deduced. In the Part II of this paper (Gawin, et al. 2005) effect of two different damage-permeability coupling formulations on the results of computer simulations concerning hygro-thermo-mechanical performance of concrete wall during standard fire, is numerically analysed.

Keywords

References

  1. Bamforth, P. B. (1987), "The relationship between permeability coefficients for concrete obtained using liquid and gas", Mag. Conc. Res., 39(138), 3-11. https://doi.org/10.1680/macr.1987.39.138.3
  2. Bary, B. (1996), "Etude de couplage hydraulique-mecanique dans le beton endomage", Laboratoire de Mecanique et Technologie (C.N.R.S. de Cachan, Universite' de Paris 6), No.11, Cachan.
  3. Bazant, Z. P. (1988), Mathematical Modelling of Creep and Shrinkage of Concrete, J. Wiley & Sons, Chichester, England.
  4. Bazant, Z. P., Kaplan, M. F. (1996), "Concrete at high temperatures, material properties and mathematical models", Longman Group Ltd., Essex, England.
  5. Bazant, Z. P., Thonguthai, W. (1978), "Pore pressure and drying of concrete at high temperature", J. Eng. Mech. Div., ASCE, 104, 1059-1079.
  6. Bazant, Z. P., Thonguthai, W. (1979), "Pore pressure in heated concrete walls: theoretical prediction", Mag. Concr. Res., 31(107), 67-76. https://doi.org/10.1680/macr.1979.31.107.67
  7. Brite Euram III BRPR-CT95-0065 HITECO (1999), "Understanding and industrial application of High Performance Concrete in High Temperature Environment" -Final Report.
  8. Gawin, D., Majorana, C. E., Pesavento, F., Schrefler, B. A (1998), "A fully coupled multiphase FE model of hygro-thermo-mechanical behaviour of concrete at high temperature", Computational Mechanics. New Trends and Applications, (Proceedings World Congress on Computational Mechanics, WCCM IV), E. Onate, S.R. Idelsohn, eds., CIMNE Barcelona, 1-19.
  9. Gawin, D., Majorana, C. E., Schrefler, B. A. (1999), "Numerical analysis of hygro-thermic behaviour and damage of concrete at high temperature", Mech. Cohes.-Frict. Mater. 4, 37-74. https://doi.org/10.1002/(SICI)1099-1484(199901)4:1<37::AID-CFM58>3.0.CO;2-S
  10. Gawin, D., Pesavento, F., Schrefler, B. A. (2002a), "Modelling of hygro-thermal behaviour and damage of concrete at temperature above the critical point of water", Int. J. Numer. Anal. Meth. in Geomech., 26(6), 537-562. https://doi.org/10.1002/nag.211
  11. Gawin, D., Pesavento, F., Schrefler, B. A. (2002b), "Simulation of damage−permeability coupling in hygrothermo- mechanical analysis of concrete at high temperature", Comm. in Num. Meth. Eng., 18, 113-119. https://doi.org/10.1002/cnm.472
  12. Gawin, D., Pesavento, F., Schrefler, B. A. (2003), "Modelling of thermo-chemical and mechanical damage of concrete as a multiphase material at high temperatures", Comput. Meth. Appl. Mech. Eng., 192(13-14), 1731-1771. https://doi.org/10.1016/S0045-7825(03)00200-7
  13. Gawin, D., Pesavento, F., Schrefler, B. A. (2004), "Modelling of deformations of high strength concrete at elevated temperatures", Materials and Structures/Concrete Science and Engineering, 37(268), 218-236.
  14. Gawin, D., Majorana, C. E., Pesavento, F., Schrefler, B. A. (2005), "Effect of damage on permeability and hygro-thermal behaviour of HPCs at elevated temperatures: Part 2. Numerical analysis", Computers and Concrete, 2(3), 203-214. https://doi.org/10.12989/cac.2005.2.3.203
  15. Gerard, B., Pijaudier-Cabot, J., Laborderie, C. (1998), "Coupled diffusion-damage modelling and the implications on failure due to strain localisation", Int. J. Solids Structures, 35(31-32), 4107-4120. https://doi.org/10.1016/S0020-7683(97)00304-1
  16. Hinrichsmeyer, K. (1987), "Strukturoriente analyse und modellbeschreibung der thermischen schaedigung von Beton", Heft 74, Technischen Universitaet Braunschweig, Braunschwieg.
  17. Mazars, J. (1984), "Application de la mecanique de l' endommagement au comportament non lineaire et la rupture du beton de structure", (in French), Thesy de Doctorat d' Etat, L. M. T., Universite de Paris.
  18. Mazars, J. (1986), "Description of the behaviour of composite concretes under complex loadings through continuum damage mechanics", Proc. of the 10th U.S. National Congress of Applied Mechanics, J.P. Lamb, ed.
  19. Mazars, J., Pijaudier-Cabot, J. (1989), "Continuum damage theory-application to concrete", J. Eng. Mech., ASCE, 115(2), 345-365. https://doi.org/10.1061/(ASCE)0733-9399(1989)115:2(345)
  20. Nechnech, W., Reynouard, J. M., Meftah, F. (2001), "On modelling of thermo-mechanical concrete for the finite element analysis of structures submitted to elevated temperatures", Fracture Mechanics of Concrete Structures, Proceedings FRAMCOS4, de Borst et al, (eds.), Swets & Zeitlinger, Lisse, 271-278.
  21. Neville, A. M. (1995), Properties of Concrete, 4th ed., Longman Group Ltd., Essex, England.
  22. Persson, B. (1996), "Hydration and strength of high performance concrete", Advn. Cem. Bas. Mat., 3, 107-123. https://doi.org/10.1016/S1065-7355(96)90043-7
  23. Schneider, U., Herbst, H. J. (1989), "Permeabilitaet und porositaet von beton bei hohen temperaturen", Deutscher Ausschuss fuer Stahlbeton, 403, 23-52.

Cited by

  1. Experimental study of the air–steam mixture leakage rate through damaged and partially saturated concrete vol.49, pp.3, 2016, https://doi.org/10.1617/s11527-015-0542-5
  2. What physical phenomena can be neglected when modelling concrete at high temperature? A comparative study. Part 1: Physical phenomena and mathematical model vol.48, pp.13, 2011, https://doi.org/10.1016/j.ijsolstr.2011.03.004
  3. Finite element analysis of various methods for protection of concrete structures against spalling during fire vol.39, pp.3, 2006, https://doi.org/10.1007/s00466-005-0024-7
  4. An Overview of Modeling Cement Based Materials at Elevated Temperatures with Mechanics of Multi-Phase Porous Media vol.48, pp.3, 2012, https://doi.org/10.1007/s10694-011-0216-y
  5. Etude expérimentale de l'interaction endommagement-température-état de contrainte-perméabilité du béton vol.11, pp.6, 2007, https://doi.org/10.1080/17747120.2007.9692963
  6. Effect of damage on permeability and hygro-thermal behaviour of HPCs at elevated temperatures: Part 2. Numerical analysis vol.2, pp.3, 2005, https://doi.org/10.12989/cac.2005.2.3.203
  7. Influence of aggregate size and inclusion of polypropylene and steel fibers on the hot permeability of ultra-high performance concrete (UHPC) at elevated temperature vol.169, pp.None, 2005, https://doi.org/10.1016/j.conbuildmat.2018.01.105
  8. Study of Toughness and Macro/Micro-Crack Development of Fibre-Reinforced Ultra-High Performance Concrete After Exposure to Elevated Temperature vol.12, pp.8, 2005, https://doi.org/10.3390/ma12081210
  9. Effect of Cement Type on the Mechanical Behavior and Permeability of Concrete Subjected to High Temperatures vol.12, pp.18, 2005, https://doi.org/10.3390/ma12183021
  10. Mechanical Properties and Explosive Spalling Behavior of Steel-Fiber-Reinforced Concrete Exposed to High Temperature-A Review vol.10, pp.7, 2020, https://doi.org/10.3390/app10072324
  11. Permeability and damage of partially saturated concrete exposed to elevated temperature vol.109, pp.None, 2005, https://doi.org/10.1016/j.cemconcomp.2020.103563
  12. Modeling the fire response of reactive powder concrete beams with due consideration to explosive spalling vol.301, pp.None, 2005, https://doi.org/10.1016/j.conbuildmat.2021.124094
  13. Fire resistance evaluation and minimum reinforcement ratio for hybrid fibre-reinforced RPC beams under fire exposure vol.44, pp.None, 2005, https://doi.org/10.1016/j.jobe.2021.103216