DOI QR코드

DOI QR Code

Analysis of a force reconstruction problem

  • Jacquelin, E. (Laboratoire Mecanique Materiaux Structures, Universite Claude Bemard Lyon 1) ;
  • Bennani, A. (Laboratoire Mecanique Materiaux Structures, Universite Claude Bemard Lyon 1) ;
  • Massenzio, M. (Laboratoire Mecanique Materiaux Structures, Universite Claude Bemard Lyon 1)
  • 투고 : 2004.07.13
  • 심사 : 2005.07.29
  • 발행 : 2005.10.20

초록

This article deals with the reconstruction of an impact force. This requires to take measurements from the impacted structures and then to deconvolve those signals from the impulse response function. More precisely, the purpose of the work described here is to analyse the method of deconvolution and the problems that it implies. Thus, it is highlighted that the associated deconvolution problem depends on the location of the measurement points: it is possible or not to reconstruct the force of impact in function of the location of this point. Then, the role of the antiresonances is linked up with this problem. The singular value decomposition is used to understand these difficulties. Numerical predictions are compared and validated with experiments.

키워드

참고문헌

  1. Alison, H. (1979), 'Inverse unstable problems and some of their applications', Math. Scientist, 4, 9-30
  2. Bennani, A. (2001), 'Determination par une analyse dynamique et une methode inverse, de la fonction de chargement d'une structure', PhD Thesis, Universite Claude Bernard-Lyon I-France
  3. Chang, C. and Sun, C.T. (1989), 'Determining transverse impact force on a composite laminate by signal deconvolution', Experimental Mechanics, 29(4), 414-419 https://doi.org/10.1007/BF02323860
  4. Doyle, J.F. (1984), 'Further developments in determining the dynamic contact law', Experimental Mechanics, 24(4),265-270 https://doi.org/10.1007/BF02323986
  5. Doyle, J.F. (1987), 'Further developments in determining the dynamic contact law', J. Sound Vib., 118(3), 441- 448 https://doi.org/10.1016/0022-460X(87)90363-4
  6. Doyle, J.F. (1989), Wave Propagation in Structures, Springer-Verlag
  7. Graff, K.F. (1975), Wave Motion in Elastic Solids, Dover Publications
  8. Gao, Y. and Randall, R.B. (1999), 'Reconstruction of diesel engine cylinder pressure using a time domain smoothing technique', Mechanical Systems and Signal Processing, 13(5), 709-722 https://doi.org/10.1006/mssp.1999.1229
  9. Hansen, P.C. (1998), Rank-deficient and Discrete Ill-posed Problems, SIAM
  10. Harrigan, U., Reid, S.R. and Inoue, H. (2001), 'Review of inverse analysis for indirect measurement of impact force', Appl. Mech. Rev., 54(6), 503-524 https://doi.org/10.1115/1.1420194
  11. Jacquelin, E., Bennani, A. and Hamelin, P. (2003), 'Force reconstruction: Analysis and regularization of a deconvolution problem', J. Sound Vib., 265, 81-107 https://doi.org/10.1016/S0022-460X(02)01441-4
  12. Liu, Y. and Shepard, W.S. (2005), 'Dynamic force identification based on enhanced least squares and total leastsquares schemes in the frequency domain', J. Sound Vib., 282, 37-60 https://doi.org/10.1016/j.jsv.2004.02.041
  13. Liu, G.R., Ma, W.B. and Han, X. (2002), 'An inverse procedure for identification of loads on composite laminates', Composites Part B, 33(6), 425-432 https://doi.org/10.1016/S1359-8368(02)00027-6
  14. McConnell, K.G (1995), Vibration Testing - Theory and Practice, Wiley Interscience
  15. Tsai, C.Z., Wu, E. and Luo, B.H. (1998), 'Forward and inverse analysis for impact on sandwich panels', AIAA, 36, 2130-2136 https://doi.org/10.2514/2.317
  16. Yen, C.S. and Wu, E. (1995a), 'On the inverse problem of rectangular plates subjected to elastic impact, Part I: Method development and numerical verification', J. Appl. Mech., 62(3), 692-698 https://doi.org/10.1115/1.2896002
  17. Yen, C.S. and Wu, E. (1995b), 'On the inverse problem of rectangular plates subjected to elastic impact, Part II: Experimental verification and further applications', J. Appl. Mech., 62(3), 699-705 https://doi.org/10.1115/1.2896003

피인용 문헌

  1. Off-line identification of dynamic loads vol.37, pp.6, 2009, https://doi.org/10.1007/s00158-008-0249-0
  2. Bayesian sparse regularization for multiple force identification and location in time domain pp.1741-5985, 2018, https://doi.org/10.1080/17415977.2018.1505883