참고문헌
- Al-Amery, R.I.M. and Roberts, T.M. (1990), 'Nonlinear finite difference analysis of composite beams with partial interaction', Comput. Struct., 35(1), 81-87 https://doi.org/10.1016/0045-7949(90)90258-4
- Amadio, C. and Fragiacomo, M. (1993), 'A finite element model for the study of creep and shrinkage effects in composite beams with deformable shear connection', Costruzioni Metalliche, 4, 213-228
- Amadio, C., Fragiacomo, M., Ceccotti, A. and Di Marco, R. (2001), 'Long-term behaviour of a timber-concrete connection system', Proc. of the RILEM Conf. 'Joints in Timber Structures ', Stuttgart, September, 263-272
- Betti, R. and Gjelsvik, A. (1996), 'Elastic composite beams', Comput. Struct., 59(3), 437-451 https://doi.org/10.1016/0045-7949(95)00275-8
- Bonamini, G, Uzielli, L. and Ceccotti, A. (1990), 'Short- and long-term experimental tests on antique larch and oak wood-concrete composite elements', Proc. of the C.T.E. Conference, Bologna, 241-251 (in Italian)
- Capretti, S. (1992), 'Time dependent analysis of timber and concrete composit (TCC) structures', Proc. of the RILEM Intern. Symposium on 'Behaviour of Timber and Concrete Composite Load-bearing Structures ', Ravenna, June 27
- Ceccotti, A. and Covan, C. (1990), 'Behaviour of timber and concrete composite load-bearing structures', Proc. of the IUFRO S.02 Conf. on Timber Engineering, Saint John, New Brunswick, August
- Ceccotti, A. (1995), 'Timber-concrete composite structures', Timber Engineering, Step 2, First Edition, Centrum Hout, The Netherlands, E13/1-E13/12
- Chiorino, M.A., Napoli, P., Mola, F. and Koprna, M. (1984), 'Structural effects of time-dependent behaviour of concrete', CEB Bull. No. 142/142 Bis, Georgi Publishing Company, Saint-Saphorin
- Comite Euro-International du Beton (1993), 'CEB-FIP Model Code 90', CEB Bull. No. 213/214, Lausanne
- Comite Europeen de Normalisation (1995), 'Eurocode 5 - Design of Timber Structures - Part 1-1: General Rules and Rules for Buildings', ENV 1995-1-1, Bruxelles
- Comite Europeen de Normalisation (1996), 'Eurocode 5 - Design of Timber Structures - Part 2: Bridges', ENV 1995-2', Bruxelles.
- Dall'Asta, A. and Zona, A. (2002), 'Non-linear analysis of composite beams by a displacement approach', Comput. Struct., 80(27-30), 2217-2228 https://doi.org/10.1016/S0045-7949(02)00268-7
- Fragiacomo, M. (2000), 'Long-term behavior of timber-concrete composite beams', Ph.D. Thesis, University of Trieste, Italy (in Italian)
- Fragiacomo, M., Amadio, C. and Macorini, L. (2004), 'A finite element model for collapse and long-term analysis of steel-concrete composite beanls', J. Struct. Eng., 130(3), 489-497 https://doi.org/10.1061/(ASCE)0733-9445(2004)130:3(489)
- Fridley, K.J., Rosowsky, D.V. and Hong, P. (1997), 'Time-dependent service-load behavior of wood floors: Analytical model', Comput. Struct., 66(6), 847-860 https://doi.org/10.1016/S0045-7949(97)00074-6
- Gattesco, N. (1999), 'Analytical modeling of nonlinear behaviour of composite beams with deformable connection', J. Constructional Steel Research, 121(2), 319-327
- Hanhijarvi, A. (1995a), 'Deformation kinetics based rheological model for the time-dependent and moisture induced deformation of wood', Wood Science and Technology, 29, 191-199
- Hanhijarvi, A. (l995b), 'Modelling of creep deformation mechanisms in wood', Ph.D. Thesis, VTT Publication 231, Technical Research Centre of Finland
- Hoyle, R.J., Itani, J.K. and Eckard, J.J. (1986), 'Creep of douglas fir beams due to cyclic humidity fluctuations', Wood and Fiber Sci., 18(3), 468-477
- Incropera, F.P. and De Witt, D.P. (1985), Fundamentals of Heat and Mass Transfer, John Wiley & Sons, New York
- Kuhlmann, U. and Schanzlin, J. (2001), 'Composite of vertically laminated timber decks and concrete', Proc. of the IABSE Conf. 'Innovative Wooden Structures and Bridges', Lahti, Finland, 507-512
- Kwak, H.-G. and Seo, Y.-J. (2000), 'Long-term behavior of composite girder bridges', Comput. Struct., 74(5), 583-599 https://doi.org/10.1016/S0045-7949(99)00064-4
- Lacidogna, G. (1994), 'Mathematical modeling of the viscoelastic behavior of concrete', Ph.D. Thesis, Polytechnic of Turin, Italy (in Italian)
- Manfredi, G., Fabbrocino, G. and Cosenza, E. (1999), 'Modeling of steel-concrete composite beams under negative bending', J. Eng. Mech., 125(6), 654-662 https://doi.org/10.1061/(ASCE)0733-9399(1999)125:6(654)
- Newmark, N.M., Siess, C.P. and Viest, I.M. (1951), 'Tests and analysis of composite beams with incomplete interaction', Proc. of Society for Experimental Stress Analysis
- Ranta Maunus, A. (1975), 'The viscoelasticity of wood at varying moisture content', Wood Science and Technology, 9, 189-205 https://doi.org/10.1007/BF00364637
- Said, E.B., Jullien, J.-F. and Siemers, M. (2002), 'Non-linear analyses of local composite timber-concrete behaviour', Proc. of the 7th World Conf. on Timber Engineering, WCTE 2002, Shah Alam, Malaysia, August, 1, 183-191
- Salari, M.R., Spacone, E., Shing, P.B. and Frangopol, D.M. (1998), 'Nonlinear analysis of composite beams with deformable shear connectors', J. Struct. Eng, 124(10), 1148-1158 https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1148)
- Spacone, E. and El-Tawil, S. (2004), 'Nonlinear analysis of steel-concrete composite structures: State of the art', J. Struct. Eng., 130(2), 159-168 https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(159)
- Toratti, T. (1992), 'Creep of timber beams in a variable environment', Report No. 31, Laboratory of Structural Eng. and Building Physics, Helsinki University of Technology
피인용 문헌
- Timber composite beams with a discrete connection system vol.166, pp.2, 2013, https://doi.org/10.1680/stbu.11.00007
- Experimental evidence for effective flexural-only stiffnesses to account for nonlinear flexural-slip behaviour of timber-concrete composite sections vol.149, 2017, https://doi.org/10.1016/j.conbuildmat.2017.04.082
- Strength analysis of chair base from wood plastic composites by finite element method vol.11, pp.3, 2007, https://doi.org/10.1179/143307507X225623
- Mechanical behavior of connections for glubam-concrete composite beams vol.143, 2017, https://doi.org/10.1016/j.conbuildmat.2017.03.136
- Short- and long-term performance of the “Tecnaria” stud connector for timber-concrete composite beams vol.40, pp.10, 2007, https://doi.org/10.1617/s11527-006-9200-2
- Simplified nonlinear model for timber-concrete composite beams vol.117, 2016, https://doi.org/10.1016/j.ijmecsci.2016.07.019
- The effect of rotatory inertia on the natural frequencies of composite beams vol.366, 2016, https://doi.org/10.1016/j.jsv.2015.12.004
- Three-Dimensional Modeling of Long-Term Structural Behavior of Wood-Concrete Composite Beams vol.140, pp.8, 2014, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000909
- Calculation model to assess the structural behavior of LVL-concrete composite members with ductile notched connection vol.153, 2017, https://doi.org/10.1016/j.engstruct.2017.10.024
- Long-Term Behavior of Prestressed LVL Members. II: Analytical Approach vol.137, pp.12, 2011, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000410
- State of the Art on Timber-Concrete Composite Structures: Literature Review vol.137, pp.10, 2011, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000353
- Long-Term Behavior of Wood-Concrete Composite Floor/Deck Systems with Shear Key Connection Detail vol.133, pp.9, 2007, https://doi.org/10.1061/(ASCE)0733-9445(2007)133:9(1307)
- Coupled finite element-finite difference formulation for long-term analysis of timber–concrete composite structures vol.96, 2015, https://doi.org/10.1016/j.engstruct.2015.03.047
- Experimental Analysis of the Structural Behavior of Timber-Concrete Composite Slabs made of Beech-Laminated Veneer Lumber vol.28, pp.6, 2014, https://doi.org/10.1061/(ASCE)CF.1943-5509.0000552
- Mechanical behaviour of pre-stressed spruce timber–timber 2.5-mm-step grooved connections under shearing tests vol.75, pp.5, 2017, https://doi.org/10.1007/s00107-016-1135-x
- Long-Term Behavior of Timber–Concrete Composite Beams. I: Finite Element Modeling and Validation vol.132, pp.1, 2006, https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(13)
- Experimental behaviour of a full-scale timber-concrete composite floor with mechanical connectors vol.45, pp.11, 2012, https://doi.org/10.1617/s11527-012-9869-3
- Full-scale long-term experiments of simply supported composite beams with solid slabs vol.67, pp.3, 2011, https://doi.org/10.1016/j.jcsr.2010.11.001
- Finite-Element Modeling of Short-Term Field Response of Composite Wood-Concrete Floors/Decks vol.136, pp.6, 2010, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000117
- Deconstructable timber-concrete composite beams with panelised slabs: Finite element analysis vol.163, 2018, https://doi.org/10.1016/j.conbuildmat.2017.12.169
- Long-term and collapse tests on a timber-concrete composite beam with glued-in connection vol.40, pp.1, 2007, https://doi.org/10.1617/s11527-006-9094-z
- A force-based frame finite element formulation for analysis of two- and three-layered composite beams with material non-linearity vol.62, 2014, https://doi.org/10.1016/j.ijnonlinmec.2014.02.001
- Nonlinear finite element analysis of timber beams and joints using the layered approach and hypoelastic constitutive law vol.46, 2013, https://doi.org/10.1016/j.engstruct.2012.08.017
- Influence of the Construction Method on the Long-Term Behavior of Timber-Concrete Composite Beams vol.141, pp.10, 2015, https://doi.org/10.1061/(ASCE)ST.1943-541X.0001247
- Full-scale long-term and ultimate experiments of simply-supported composite beams with steel deck vol.67, pp.10, 2011, https://doi.org/10.1016/j.jcsr.2011.04.010
- Experimental and Numerical Investigations of Groove Connections for a Novel Timber-Concrete-Composite System vol.28, pp.6, 2014, https://doi.org/10.1061/(ASCE)CF.1943-5509.0000549
- Composite Wood-Concrete Beams Using Utility Poles: Time-Dependent Behavior vol.137, pp.6, 2011, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000293
- Long-Term Behavior of Timber–Concrete Composite Beams. II: Numerical Analysis and Simplified Evaluation vol.132, pp.1, 2006, https://doi.org/10.1061/(ASCE)0733-9445(2006)132:1(23)
- Wood-Concrete and Wood-Wood Mixed Beams: Rational Basis for Selecting Connections vol.134, pp.3, 2008, https://doi.org/10.1061/(ASCE)0733-9445(2008)134:3(440)
- Fire Design of Timber-Concrete Composite Slabs with Screwed Connections vol.136, pp.2, 2010, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000101
- 08.27: Steel-timber composite (STC) beams: Numerical simulation of long-term behaviour vol.1, pp.2-3, 2017, https://doi.org/10.1002/cepa.250
- Development of prefabricated timber–concrete composite floor systems vol.164, pp.2, 2011, https://doi.org/10.1680/stbu.10.00010
- Long-term performance of adhesively bonded timber-concrete composites vol.72, 2017, https://doi.org/10.1016/j.ijadhadh.2016.10.005
- Experimental and Numerical Investigations of Fire Resistance of Novel Timber-Concrete-Composite Decks vol.28, pp.6, 2014, https://doi.org/10.1061/(ASCE)CF.1943-5509.0000539
- Laboratory Tests and Numerical Analyses of Prefabricated Timber-Concrete Composite Floors vol.136, pp.1, 2010, https://doi.org/10.1061/(ASCE)ST.1943-541X.0000080
- Prefabricated timber-concrete composite floors vol.74, pp.3, 2016, https://doi.org/10.1007/s00107-016-1007-4
- Nonlinear Long-Term Analysis of Timber-Concrete Composite Structures with Finite Element-Finite Difference Scheme vol.553, pp.1662-7482, 2014, https://doi.org/10.4028/www.scientific.net/AMM.553.618
- Design Approach to Predict Post-Tensioning Losses in Post-Tensioned Timber Frames vol.144, pp.8, 2018, https://doi.org/10.1061/(ASCE)ST.1943-541X.0002101
- Bolt shear connectors in grout pockets: Finite element modelling and parametric study vol.176, pp.None, 2018, https://doi.org/10.1016/j.conbuildmat.2018.05.029
- Analytical derivation of the effective creep coefficients for timber-concrete composite structures vol.172, pp.None, 2005, https://doi.org/10.1016/j.engstruct.2018.05.056
- Long-Term Performance Assessment of an Operative Post-Tensioned Timber Frame Structure vol.145, pp.5, 2005, https://doi.org/10.1061/(asce)st.1943-541x.0002308
- Experimental and Analytical Investigations on Short-Term Behavior of Glubam-Concrete Composite Beams vol.146, pp.3, 2005, https://doi.org/10.1061/(asce)st.1943-541x.0002517
- A Calculation Method for Interconnected Timber Elements Using Wood-Wood Connections vol.10, pp.3, 2020, https://doi.org/10.3390/buildings10030061
- Capacity and Failure-Mode Prediction of Mass Timber Panel-Concrete Composite Floor System with Mechanical Connectors vol.147, pp.2, 2021, https://doi.org/10.1061/(asce)st.1943-541x.0002909
- Long-term coupled analysis of steel-timber composite (STC) beams vol.278, pp.None, 2005, https://doi.org/10.1016/j.conbuildmat.2021.122348
- Modelagem numérica comparativa da ponte Florestinha, construída em madeira e concreto vol.21, pp.3, 2005, https://doi.org/10.1590/s1678-86212021000300552