Adhesion Improvements of $TiB_2$ Coatings on Nitrided AlSl H13 Steel

$TiB_2$ 코팅의 접착력 향상을 위한 AlSl H13 steel의 질화처리

  • Park Bohwan (School of Mater. Sci. Eng., Seoul National University) ;
  • Jung Dong-Ha (School of Mater. Sci. Eng., Seoul National University) ;
  • Kim Hoon (School of Mater. Sci. Eng., Seoul National University) ;
  • Lee Jung-Joong (School of Mater. Sci. Eng., Seoul National University)
  • 박보환 (서울대학교 재료공학부) ;
  • 정동하 (서울대학교 재료공학부) ;
  • 김훈 (서울대학교 재료공학부) ;
  • 이정중 (서울대학교 재료공학부)
  • Published : 2005.04.01

Abstract

This study investigated the effect of nitriding on the hardness and adhesion properties of $TiB_2$ coatings. Inductively coupled plasma (ICP) was used for both nitriding and deposition. By applying ICP, H13 steel was nitrided at a high rate of $50\;{\mu}m/hr$. After nitriding, a Fe4N compound layer or a diffusion layer was formed according to the hydrogen/nitrogen ratio. Both layers could improve the load-bearing capacity of the substrate by increasing the substrate hardness. The adhesion of the $TiB_2$ coatings increased to $\~30N$ after nitriding, but the hardness of the coating was lowered to 20-30 GPa. However, the adhesion of the $TiB_2$ coatings with a high hardness (>60 GPa) could not be improved substantially by nitriding due to the large difference in hardness between the coating and the substrate. The grain size of the $TiB_2$ coating was larger on the nitrided substrates, resulting in a decrease in the hardness of the coating.

Keywords

References

  1. G. Sade, J. Pelleg, Appl. Surf. Sci., 91 (1995) 263 https://doi.org/10.1016/0169-4332(95)00129-8
  2. J. D. Rigney, J. J. Lewandowski, J. Mater. Sci., 28 (1993) 3911 https://doi.org/10.1007/BF00353199
  3. J. Chen, J. A. Barnard, Mater. Sci. Eng., A191 (1995) 233
  4. K. S. Klimek, H. Ahn, I. Seebach, M. Wang, K.-T. Rie, Surf. Coat. Technol., 174-175 (2003) 677 https://doi.org/10.1016/S0257-8972(03)00365-7
  5. B. Podgrnik, S. Hogmark, O. Sandberg, V. Leskovsek, Wear, 254 (2003) 1113 https://doi.org/10.1016/S0043-1648(03)00322-3
  6. J. W. Lim, H. S. Park, T. H. Park, J. J. Lee, J. H. Joo, J. Vac. Sci. Technol., A18 (2000) 524
  7. E. Kelesoglu, C. Mitterer, Surf. Coat. Technol., 98 (1998) 1483 https://doi.org/10.1016/S0257-8972(97)00397-6
  8. M. Berger, M. Larsson, S. Hogmark, Surf. Coat. Technol., 124 (2000) 253 https://doi.org/10.1016/S0257-8972(99)00638-6
  9. J. W. Lim, H. S. Park, T. H. Park, J. J. Lee, J. H. Joo, J. Vac. Sci. Technol., A18 (2000) 524
  10. S. J. Bull, Surf. Coat. Technol., 50 (1991) 25 https://doi.org/10.1016/0257-8972(91)90188-3
  11. J. C. A. Batista, M. C. Joseph, C. Godoy, A. Matthews, Wear, 249 (2002) 971 https://doi.org/10.1016/S0043-1648(01)00833-X
  12. Takayasu Sato, Kenichi Sugai, Shizuyo Veda, Kouji Matsunarni, Manabu Yasuoka, Surf. Coat. Technol., 169-170 (2003) 45 https://doi.org/10.1016/S0257-8972(03)00073-2