Salt Tolerance in Transgenic Pea (Pisum sativum L.) Plants by P5CS Gene Transfer

  • Najafi F. (Department of Biology, Teacher Training University) ;
  • Rastgar-jazii F. (National Research Center for Genetic Engineering and Biotechnology) ;
  • Khavari-Nejad R. A. (Department of Biology, Teacher Training University) ;
  • Sticklen M. (Department of Crop and Soil Science, Michigan State University)
  • 발행 : 2005.12.01

초록

Slices of embryonic axis of mature pea (Pisum sativum L. cv. Green Arrow) seeds were used as explant. Transformation of explants was done via Agrobacterium tumefaciens bearing vector pBI-P5CS construct. The best results for inoculation of explants were obtained when they were immersed for 90 s at a concentration of $6{\times}10^8$ cell $ml^(-1)$ of bacterial suspension. Transformed pea plants were selected on $50\;mg\;l^(-1)$ kanamycin and successful transformants were confirmed by PCR and blotting. Transgenic plants were further analyzed with RT-PCR to confirm the expression of P5CS. Transgenic plants and non-transgenic plants were treated with different concentrations of NaCl 0 (control), 100, 150 and 200 mM in culture medium. Measurement of proline content indicated that transgenic plants produced more amino acid proline in response to salt in comparison with non-transgenic plants. Photosynthetic efficiency in transgenic plants under salt-stress was more than that of non-transgenic plants.

키워드

참고문헌

  1. Ashraf M (1994) Breeding for salinity tolerance in plants. Crit Rev Plant Sci 13: 17-42 https://doi.org/10.1080/713608051
  2. Ashraf M (2002) Salt tolerance of cotton: some new advances. Crit Rev Plant Sci 21: 1-30 https://doi.org/10.1016/S0735-2689(02)80036-3
  3. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39: 205-207 https://doi.org/10.1007/BF00018060
  4. Brady CJ, Gibson TS, Barlow EWR, Spiers J, Wyn Jones RG (1984) Salt tolerance in plants. I. lons, compatible solutes and the stability of plant ribosomes. Plant Cell Environ 7: 571-578
  5. Brown DCW, Atanassov A (1985) Role of genetic background in somatic embryogenesis in Medicago. Plant Cell Tissue Organ Cult 4: 111-122 https://doi.org/10.1007/BF00042269
  6. Casey R, Davies DR (1993) Peas: genetics, molecular biology and biotechnology. CAB International. Wallingford, UK
  7. Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45: 569-606 https://doi.org/10.1146/annurev.mi.45.100191.003033
  8. Christou P (1994) The biotechnology of crop legumes. Euphytica 74: 165-185 https://doi.org/10.1007/BF00040399
  9. Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4: 215-223 https://doi.org/10.1046/j.1365-313X.1993.04020215.x
  10. Delfine S, Alvino A, Villani MC, Loreto F (1999) Restrictions to carbon dioxide conductance and photosynthesis in spinach leaves recovering from salt stress. Plant Physiol 119: 1101-1106 https://doi.org/10.1104/pp.119.3.1101
  11. Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1: 19-21 https://doi.org/10.1007/BF02712670
  12. Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50: 151-158 https://doi.org/10.1016/0014-4827(68)90403-5
  13. Gibson TS, Spiers J, Brady CJ (1984) Salt tolerance in plants. II. In vitro translation of m-RNAs from salt-tolerant and salt-sensitive plants on wheat germ ribosomes: responses to ions and compatible solutes. Plant Cell Environ. 7: 579-587
  14. Grant JE, Cooper PA, MeAra AE, Frew TJ (1995) Transformation of peas (Pisum sativum L.) using immature cotyledons. Plant Cell Reports 15: 254-258 https://doi.org/10.1007/BF00193730
  15. Grime JP (1979) Plant strategies and vegetation process, Wiley, New York
  16. Hanson AD, Hitz WD (1982) Metabolic responses of mesophytes to plant water deficits. Annu Rev Plant Physiol 33: 163-203 https://doi.org/10.1146/annurev.pp.33.060182.001115
  17. Igarashi Y, Yoshiba Y, Sanada Y, Wada K, YamaguchiShinozaki K, Shinozaki K (1997) Characterization of the gene for ${\Delta}^1$-pyrroline-5-carboxylate synthetase and correlation between the expression of the gene and salt tolerance in Oryza sativa L. Plant Mol Biol 33: 857-865 https://doi.org/10.1023/A:1005702408601
  18. Ingram J, Bartels D (1996) The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 377-403 https://doi.org/10.1146/annurev.arplant.47.1.377
  19. Jefferson RA (1987) Assaying chimeric genes in plants: the Gus gene fusion system. Plant Mol Biol Rep 5: 387-405 https://doi.org/10.1007/BF02667740
  20. Kathen ADe, Jacobsen H-J (1990) Agrobacterium tumefaciensmediated transformation of pisum sativum L. using binary and cointegrate vectors. Plant Cell Reports 9: 276-279 https://doi.org/10.1007/BF00232301
  21. Kavi Kishor PB, Hong Z, Miao G-H, Hu C.-AA, Verma DPS (1995) Overexpression of ${\Delta}^1$-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108: 1387-1394 https://doi.org/10.1104/pp.108.4.1387
  22. Khavari-Nejad RA (1980) Growth of tomato plants in different oxygen concentrations. Photosynthetica 14: 326-336
  23. Khavari-Nejad RA (1986) Carbon dioxide enrichment preconditioning effects on chlorophylls contents and photosynthetic efficiency in tomato plants. Photosynthetica 20: 315-317
  24. Kishor PBK, Hong Z, Miao GH, Hu C-AA, Verma DPS (1995) Overexpression of delta-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108: 1387-1394 https://doi.org/10.1104/pp.108.4.1387
  25. Levitt J (1980) Responses of plants to environmental stresses, water radiation, salt and other stresses, second ed., vol. II, Academic Press, New York
  26. Lulsdorf MM, Rempel H, Jackson JA, Baliski DS, Hobbs SLA (1991) Optimizing the production of transformed pea (Pisum sativum L.) callus using disarmed Agrobacterium tumefaciens strains. Plant Cell Reports 9: 479-483
  27. Marschner H (1995) Mineral nutrition of higher plants. Academic Press, London
  28. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ. 25: 239-250 https://doi.org/10.1046/j.0016-8025.2001.00808.x
  29. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  30. Nash D, Paleg LG, Wiskich JT (1982) Effect of proline, betaine and some other solutes on the heat stability of mitochondrial enzymes. Aust J Plant Physiol 9: 47-57 https://doi.org/10.1071/PP9820047
  31. Nauerby B, Madsen M, Christiansen J, Wyndaele R (1991) A rapid and efficient regeneration system for pea (Pisum sativum L.) suitable for transformation. Plant Cell Reports 9: 676-679 https://doi.org/10.1007/BF00235355
  32. Noble CL, Halloran GM, West DW (1984) Identification and selection for salt tolerance in lucerne (Medicago sativa L.), Aust J Agric Res 35: 239-252 https://doi.org/10.1071/AR9840239
  33. Paleg LG, Douglas TJ, van Daal A, Keech DB (1981) Proline, betanie and other organic solutes protect enzymes against heat inactivation. Aust J Plant Physiol 8: 107-114
  34. Paleg LG, Stewart GR, Bradbeer JW (1984) Proline and glycine betaine influence protein solvation. Plant Physiol 75: 974-978 https://doi.org/10.1104/pp.75.4.974
  35. Peng Z, Lu Q, Verma DPS (1996) Reciprocal regulation of ${\Delta}^1$- pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol Gen Genet 253: 334-341
  36. Pilon-Smits EAH, Ebskamp MJM, Paul MJ, Jeuken MJW, Weisbeek PJ, Smeekens SCM (1995) Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiol 107: 125-130 https://doi.org/10.1104/pp.107.1.125
  37. Pollard A, Wyn Jones RG (1979) Enzyme activities in concentrated solutions of glycinebetaine and other solutes. Planta 144: 291-298 https://doi.org/10.1007/BF00388772
  38. Polowick PL, Quandt J, Mahon JD (2000) The ability of pea transformation technology to transfer genes into peas adapted to western Canadian growing conditions. Plant Science 153: 161-170 https://doi.org/10.1016/S0168-9452(99)00267-8
  39. Puonti-Kaerlas J, Eriksson T, Engstrӧ̈m P (1990) Production of transgenic pea (Pisum sativum L.) plants by Agrobacterium tumefaciens-mediated gene transfer. Theor Appl Genet. 80: 246-252
  40. Rudolph AS, Crowe JH, Crowe LM (1986) Effects of three stabilizing agents-proline, betaine and trehalose- on membrane phospholipids. Arch Biochem Biophys 245: 134-143 https://doi.org/10.1016/0003-9861(86)90197-9
  41. Samaras Y, Bressan RA, Csonka LN, García-Ríos MG, Paino D'Urzo M, Rhodes D (1995) Proline accumulation during drought and salinity. In: Smirnoff N, ed. Environment and plant metabolism. Oxford: Bios Scientific Publishers, 161-187
  42. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
  43. Santarius KA (1992) Freezing of isolated thylakoid membranes in complex media. VIII. Differential cryoprotection by sucrose, proline and glycerol. Physiol Plant 84: 87-93 https://doi.org/10.1111/j.1399-3054.1992.tb08769.x
  44. Santoro MM, Liu Y, Khan SMA, Hou L-X, Bolen DW(1992) Increased thermal stability of proteins in the presence of naturally occurring osmolytes. Biochemistry 31: 5278-5283 https://doi.org/10.1021/bi00138a006
  45. Savoure A, Jaoua S, Hua X.-J, Ardiles W, van Montagu M, Verbruggen N (1995) Isolation, characterization, and chromosomal location of a gene encoding the ${\Delta}^1$- pyrroline-5-carboxylate synthetase in Arabidopsis thaliana. FEBS Lett 372: 13-19 https://doi.org/10.1016/0014-5793(95)00935-3
  46. Schroeder HE, Schotz AH, Wardley-Richardson T, Spencer D, Higgins TJV (1993) Transformation and regeneration of two cultivars of pea (Pisum sativum L.). Plant Physiol 101: 751-757 https://doi.org/10.1104/pp.101.3.751
  47. Shannon MC (1998) Adaptation of plants to salinity. Adv Agron 60: 75-119
  48. Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28: 1057-1060 https://doi.org/10.1016/0031-9422(89)80182-7
  49. Srinivas V, Balasubramanian D (1995) Proline is a proteincompatible hydrotrope. Langmuir 11: 2830-2833 https://doi.org/10.1021/la00007a077
  50. Tarczynski MC, Jensen RG, Bohnert H (1993) Stress protection of transgenic tobacco by production of the osmolyte mannitol. Science 259: 508-510 https://doi.org/10.1126/science.259.5094.508
  51. Tester M, Davenport R (2003) $Na^+$ tolerance and Na+ transport in higher plants. Ann Bot 91: 503-507 https://doi.org/10.1093/aob/mcg058
  52. Verma DPS, Hong Z (1996) Genetically engineered plants resistant to soil drying and salt stress: how to interpret osmotic relations? Plant Physiol 110: 1051-1053 https://doi.org/10.1104/pp.110.4.1051
  53. Verma DPS (1999) Osmotic stress tolerance in plants: role of proline and sulfur metabolisms. In Molecular Responses to Cold, Drought, Heat and Salt Stress in Higher Plants. Edited by Shinozaki, K. and Yamaguchi-Shinozaki, K. pp. 153-168. R.G. Landes Company, Austin, Texas, U.S.A
  54. Winicov I (1998) New molecular approaches to improving salt tolerance in crop plants. Ann Bot 82: 703-710 https://doi.org/10.1006/anbo.1998.0731
  55. Xu D, Duan X, Wang B, Hong B, Ho THD, Wu R (1996) Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 110: 249-257 https://doi.org/10.1104/pp.110.1.249
  56. Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for${\Delta}^1$_ pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7: 751-760 https://doi.org/10.1046/j.1365-313X.1995.07050751.x
  57. Yoshiba Y, Kiyosue T, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K (1997) Regulation of levels of proline as an osmolyte in plants under water stress. Plant Cell Physiol 38: 1095-1102 https://doi.org/10.1093/oxfordjournals.pcp.a029093