DOI QR코드

DOI QR Code

Production of Transgenic Maize (Zea mays L.) Using Agrobacterium tumefaciens-Mediated Transformation

Agrobacterium tumefaciens 공동배양법을 이용한 옥수수 형질전환체 생산

  • Cho Mi-Ae (Eugentech Inc) ;
  • Park Yun-Ok (Eugentech Inc) ;
  • Kim Jin-Suck (Korea Research Institute of Chemical Technology) ;
  • Park Ki-Jin (Maize Experiment Station, Gangwon-do Provincial Agricultural Research and Extension Service) ;
  • Min Hwang-Ki (Maize Experiment Station, Gangwon-do Provincial Agricultural Research and Extension Service) ;
  • Liu Jang-Ryol (Plant Cell Biotechnology Laboratory, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Clemente Tom (Plant Science Initiative, University of Nebraska-Lincoln) ;
  • Choi Pil-Son (Department of Medicinal Plant Resources, Nambu University)
  • Published : 2005.06.01

Abstract

Agrobacterium tumefaciens-mediated immature embryo transformation was used to produce transgenic maize. Immature embryo of Hi II genotype were co-cultivated with strains Agrobacterium tumefaciens (C58C1) containing the binary vectors (pPTN290) carrying with Ubiquitin promoter-GUS gene as reporter gene and NOS promoter-nptll gene conferring resistance to paromomycin as selective agent. Seven embryogenic callus lines transformed showed the resistance in paromomycin antibiotics. Histochemical GUS assay showed that 7 individual lines transformed with the GUS gene were positive response among the transformants. Southern blot analysis revealed that the nptll gene segregated and expressed in their progeny.

옥수수 미숙배배양과 Agrobacterium tumefaciens공동배양법에 의해 형질전환체를 생산하였다. Hi II계통의 미숙배를 Ubiquitin 1 promoter-GUS유전자와 선발마커로서 nptII 유전자로 제작된 pPTN290벡터를 C58C1에 도입한 후 형질전환 균주로 사용하였다. 7개의 paromomycin저항성 배 발생캘러스를 얻었으며, GUS양성반응을 나타내는 7개의 독립적인 식물체를 얻었다. Southern분석법에 의하여 $T_1$세대 식물체로부터 nptII유전자가 안정적으로 도입되어 있음을 확인하였다.

Keywords

References

  1. Armstrong CL, Green CE, Phillips RL (1991) Development and availability of germplasm with high Type II culture formation response. Maize Genet Coop News lett 65: 92-93
  2. Armstrong CL (1994) Regeneration of plants from somatic cell culture: Applications for in vitro genetic manipulation. In: The maize handbook, freeling M, Walbot V(eds), New York Springer-Verlag, pp. 663-671
  3. Carvalho CHs, Bohorova N, Bordallo PN, Abreu LL, Valicente FH, Bressan W, Paiva E (1997) Type II callus production and plant regeneration in tropical maize genotypes. Plant Cell Rep 17: 73-76 https://doi.org/10.1007/s002990050355
  4. Cho MA, Park YO, Kim JS, Park KJ, Min HK, Liu JR, Choi PS (2005) Yellowish friable Embryogenic Callus (YFEC) Production and Plant Regeneration from Immature Embryo Cultures of Domestic Maize Cultivars and Genotypes (Zea may L.). Kor Plant Biotechnol (In press)
  5. Dellaporta SL, Wood J, Hicks JB (1985) Maize DNA miniprep. In: Malmberg R, Messing J, Sussex (eds), Molecular Biology of Plants: A laboratory Course Manual, Cold Spring Harbor, New York, pp 36-37
  6. Frame BR, Zhang H, Cocciolone SM, Sidorenko LV, Dietrich CR, Pegg SE, Zhen S, Schnable PS, Wang K (2000) Production of transgenic maize from bombarded type II callus: effect of gold particle size and callus morphology on transformation efficiency. In Vitro Cell Dev Viol-Plant 36: 21-29 https://doi.org/10.1007/s11627-000-0007-5
  7. Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Pegg SEK, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129: 13-22 https://doi.org/10.1104/pp.000653
  8. Gordon-Kamm WJ, Spencer TM, Mangano M, Adams TR, Daines RJ, Start WG, O' Brien JV, Chambers SA, Adams WR Jr, Willetts NG (1990) Transformation of maize cells and regeneration of fertile transgenic plants. Plant Cell 2: 603-618 https://doi.org/10.1105/tpc.2.7.603
  9. Hamilton CM, Frary A, Lewis C, Tanksley SD (1996) Stable transfer of intact high molecular weight DNA into plant chromosomes. Proc Nat! Acad Sci USA 93: 9975-9979 https://doi.org/10.1073/pnas.93.18.9975
  10. Ishida Y, Saito H, Ohta S, Hiei Y, Komari T, Kumashiro T (1996) High efficiency transformation of maize (Zea mays L.) mediated by Agrobacterium tumefaciens. Nature Biotechnol 14: 745-750 https://doi.org/10.1038/nbt0696-745
  11. Lupotto E, Reali A, Passera S, Chan MT (1999) Maize elite inbred lines are susceptible to Agrobacterium tumefaciens-mediated transformation. Maydica 44: 211-218
  12. Jefferson RA, Kavanagh TA, Bevan MW (1987) GUS fusion: TEX>${\beta}$-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6: 3901-3907.
  13. Moose SP, Clemente T (2002) Improved methods of maize Agrobacterium-mediated transformation. Final Rep IMBA project 2002-3
  14. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  15. Pareddy D, Petolino J, Skokut T, Hopkins N, Miller M, Welter M, Smith K, Clayton D, Pescitelli S, Gould A (1997) Maize transformation via helium blasting. Maydica 42: 143-154
  16. Roa-Rodriguez C, Nottenburg (1999) NptII gene in combination with paromomycin as a selective agent. Patent EP 927765A1
  17. Songstad DD, Pertersen CL. Hairston WL, Hinchee B (1996) production of transgenic maize plants and progeny by bombardment of Hi II immature embryos. In Viro Cell Dev Viol Plant 32: 179-183 https://doi.org/10.1007/BF02822763
  18. Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98: 503-512 https://doi.org/10.1016/S0022-2836(75)80083-0
  19. Zhao ZY, Gu W, Cai T, Pierce DA (1999) Methods for Agrobacterium-mediated transformation. United States Patent No. 5,981,840.
  20. Zhao ZY, Gu W, Cai T, Tagliani LA, Hondred DA, Bond D, Krell S, Rudert ML, Bruce WB, Pierce DA (1998) Molecular analysis of T0 plants transformed by Agrobacterium and comparison of Agrobacterium- mediated transformation with bombardment transformation in maize. Maize Genet Coop Newslett 72: 34-37

Cited by

  1. Expression of Dengue virus EIII domain-coding gene in maize as an edible vaccine candidate vol.41, pp.1, 2014, https://doi.org/10.5010/JPB.2014.41.1.50
  2. Agrobacterium-mediated transformation in Citrullus lanatus vol.52, pp.2, 2008, https://doi.org/10.1007/s10535-008-0076-6
  3. The development of transgenic maize expressing Actinobacillus pleuropneumoniae ApxIIA gene using Agrobacterium vol.37, pp.3, 2010, https://doi.org/10.5010/JPB.2010.37.3.313