Evaluation of Oil Infiltration Behavior in Porous Media Using Dielectric Response

유전율에 의한 지반 매질내 유류침투거동 분석

  • Kim Man-Il (Korea Institute of Water and Environment, Korea Water Resources Corporation) ;
  • Jeong Gyo-Cheol (Dept. of Earth and Environmental Sciences, Andong National University)
  • 김만일 (한국수자원공사 수자원연구원) ;
  • 정교철 (안동대학교 지구환경과학과)
  • Published : 2005.03.01

Abstract

For detecting a ground contamination survey, soil sampling method have been used a drilling or coring technique in general. However these methods are very difficult to systematically real-time monitoring of variation of contamination degree in field. ]'n this research frequency Domain Reflectometry (FDR) system was suggested and carried out to experimental approaches for determination of oil contamination on surface and underground. Experimental method using FDR method was discussed with feasibility of measurement in the laboratory column test. It is determined to degree of oil contamination due to response of dielectric constant re-lated with volumetric water content(θ/sub w/) and volumetric oil content( θ/sub al/ ) of saturated and unsaturated soil media. And physical properties such as effective porosity and oil residual ratio of saturated soil media were also measured through real-time monitoring works using installed FDR measurement sensors, which are defected characteristics of oil movement in the saturated soil media under the soil column tests. In the results of these experiments, a range of effective porosity was estimated to about 0.35 compared with initial porosity 0.40 of manufactured saturated soil media, which is also calculated to about 87.5% to the ratio of initial porosity to effective porosity. Finally oil residual ratio which is compared with volumetric water content and volumetric oil content was calculated about 62.5%.

지반오염을 조사하기 위해서는 시추작업을 통하여 시료를 채취하는 방법이 일반적이지만, 실시간으로 원위치에서 다양한 오염물질들의 오염 도 변화를 체계적으로 모니터링 하는 것은 대단히 어렵다. 본 연구에서는 frequency Domain Reflectometry (FDR) 장비를 고안하여 지반의 유류오염을 파악하기 위한 유전율 측정법의 실험적 접근을 시도하였다. 구체적으로 포화 및 불포화 매질에 대한 유류 오염도 측정 및 체적함수비 (θ/sub w/)와 체적 유류비 ( θ/sub al/)의 관계에서 유전율 상수 반응에 따른 매질의 유류 오염도 등의 측정 가능성을 실내 시험을 통해 검토하였다. 뿐만 아니라 실내 칼럼 시험을 수행하여 포화 매질 내에서 유류 거동 특성을 각기 설치된 FDR 측정 센서를 이용해 모니터링하여 포화 매질의 유효공극률과 유류 잔류비를 측정하였다. 그 결과 초기 공극률 0.40으로 제작된 포화 매질의 유효공극률은 약 0.35로 공극률 대비 약 87.5% 범위내에 존재함을 알 수 있었으며, 유류 잔류비는 약 62.5% 정도로 매우 높게 나타났다.

Keywords

References

  1. 김만일, Nishigaki, M., 2003, 유전율법에 따른 다공질 매질의 특성 파악을 위한 실험적 연구, 지질공학, 13(4), 405-418
  2. 김만일, 정교철, 2004, Frequency Domain Reflectometry System을 이용한 포화 다공질매질의 유전율 측정을 위한 연구, 지질공학, 14(2), 179-187
  3. 김만일, 정교철, 박창근, 2004, 지하댐 지반 물성치 측정을 위한 유전율 측정 시스템 개발, 지질공학, 14(4), 361-369
  4. 地盤工學会, 2002, 地盤工學 ․ 實務シリ-ズ 15; 土壤․地 下水汚染の調査 ․ 矛側 ․ 対策, 社団法人 地盤工學会, 271(日本語版)
  5. Ansoult, M., L.W. De Backer and M. Declercq, 1985, Statistical relationship between apparent dielectric constant and water content in porous media. Soil. Sci. Soc., 49, 47-50 https://doi.org/10.2136/sssaj1985.03615995004900010009x
  6. Campbell, J.D., 1973, Pore pressures and volume changes in saturated soils, Ph.D. thesis, University of Illinois, Urbana-Champaign, Illinois, USA
  7. Chan, C.Y. and R.J. Knight, 1999, Determining water content and saturation from dielectric measurements in layered materials, Water Resources Research, 35(1), 85-93 https://doi.org/10.1029/1998WR900039
  8. Drenvich, V.P., S.I. Siddiqui, J. Lovell and Q. Yi, 2001, Water content and density of soil in situ by the Purdue TDR method, Proceeding of the symposium TDR2001: Innovative Applications of TDR Technology, Northwestern University, Evanston, Illinois
  9. Gaskin, G.J. and J.D. Miller, 1996, Measurement of soil water content using a simplified impedance measuring, J. Agric. Eng. Res., 63, 153-160 https://doi.org/10.1006/jaer.1996.0017
  10. Jackson, S.H., 2003, Comparison of calculated and measured volumetric water content at four field sites, Agricultural water management, 58, 209-222 https://doi.org/10.1016/S0378-3774(02)00078-1
  11. Jacobsen, O.H. and Schjonning, P., 1993, A laboratory calibration of time domain reflectometry for soil water measurement including efects of bulk density and texture, Journal of Hydrology, 151, 147-157 https://doi.org/10.1016/0022-1694(93)90233-Y
  12. Mohamed, A.M.O. and Said, R.A., 2005, Detection of organic pollutants in sandy soils via TDR and eigendecomposition, Jounal of contaminant hydrology, 76, 235-249 https://doi.org/10.1016/j.jconhyd.2004.09.002
  13. Munoz-Carpena, R., Regalado, C.M., Ritter, A., Alvarez-Benedi, J. and Socorro, A.R, 2005, TDR estimation of electrical conductivity and saline solute concentration in a volcanic soil, Geoderma, 124, 399-413 https://doi.org/10.1016/j.geoderma.2004.06.002
  14. Nishigaki, M., Komastu, M. and Kim, M.I., 2003, An experimental approach for estimating the porosity and effective porosity of porous media by permittivity methods, Proceeding of the international symposium on the Fusion Technology of Geosystem Engineering, Rock Engineering and Geophysical Exploration, November 18-19, Seoul, Korea, 703-710
  15. Noborio, K., 2001, Measurement of soil water content and electrical conductivity by time domain reflectometry: a review, Computers and electronics in agriculture, 31, 213-237 https://doi.org/10.1016/S0168-1699(00)00184-8
  16. Tada, H., 1994, Study on the infiltration characteristics of the clay soils, Master thesis, Okayama University, Japan (in Japanese)
  17. Topp, G.C., J.L. Davis and A.P. Annan, 1980, Electromagnetic determination of soil water content: Measurement in coaxial transmission lines, Water Resources Research, 16(3), 574-582 https://doi.org/10.1029/WR016i003p00574