References
- ALAM, K. AND SAXENA, K. M. L. (1981). 'Positive dependence in multivariate distributions', Communications in Statistics-Ttieoru and Methods, A10, 1183-1196
- BAEK, J. I., KIM, T. S., LIANG, H. Y. (2003). 'On the convergence of moving average processes underdepende nt conditions', Australian & New Zealand Journal of Statistics, 45 (3), 901-912
- BLOCK, H. W., SAVITS, T. H., SHAKED, M. (1982). 'Some concepts of negative dependence', Annals of Probability, 10, 765-772 https://doi.org/10.1214/aop/1176993784
- EBRAHIMI, N., GHOSH, M. (1981). 'Multivariate negative dependence', Communications in Statistics-Theory and Methods, A10 (4), 307-337
- ERDos, P. (1949). 'On a theorem of Hsu and Robbins', Annals of Mathematical Statistics, 20, 286-291 https://doi.org/10.1214/aoms/1177730037
- Hsu, P. L., ROBBINS, H. (1947). 'Complete convergence and the law of large numbers', Procedings of the National Academy of Sciences, USA., 33, 25-31
- Hu, T. C., MoRICZ, F., TAYLOR, R. L. (1986). 'Strong laws of large numbers for arrays of rowwise independent random variables', Statistics Technical Report 27, University of Georgia
- Hu, T. C., MoRICZ, F., TAYLOR, R. L. (1989). 'Strong laws of large numbers for arrays of rowwise independent random variables', Acta Mathematica Hungarica, 54(1-2),153-162 https://doi.org/10.1007/BF01950716
- JOAG-DEv, K. (1990). 'Conditional negative dependence in stochastic ordering and interchangeable random variables', In: Block, H. W., Simpson, A. R., Savits, T. H.(Eds.), Topics in Statistical Dependence, IMS Lecture Notes
- JOAG-DEV, K., PROSCHAN, F.(1983). 'Negative association of random variables, with applications', Annals of Statistics, 11, 286-295 https://doi.org/10.1214/aos/1176346079
- KARLIN, S., RINOTT, Y. (1980b). 'Classes of orderings of measures and related correlation inequalities. II. Multivariate reverse rule distributions', Journal of Multivariate Analysis, 10, 499-516 https://doi.org/10.1016/0047-259X(80)90066-4
- LIANG,H.Y. (2000). 'Complete convergence for weighted sums of negatively associated random variables', Statistics & Probability Letters, 48 , 317-325 https://doi.org/10.1016/S0167-7152(00)00002-X
- LIANG, H. Y., Su, C. (1999). 'Complete convergence for weighted sums of NA sequence', Statistics & Probability Letters, 45, 85-95 https://doi.org/10.1016/S0167-7152(99)00046-2
- MATULA, P. (1992). 'A note on the almost sure convergence of sums of negatively dependent random variables', Statistics & Probability Letters, 15, 209-213 https://doi.org/10.1016/0167-7152(92)90191-7
- NEWMAN, C. M., WRIGHT, A. L. (1982). 'Associated random variables and martingale inequalities' , Zeitschrift Wahrscheinlichkeitstheorie und Verwandte Gebiete, 59, 361-371 https://doi.org/10.1007/BF00532227
- ROUSSAS, G. G. (1994). 'Asymptotic normality of random fields of positively or negatively associated processes', Journal of Multivariate Analysis, 50, 152-173 https://doi.org/10.1006/jmva.1994.1039
- SHAO, Q. M. (2000). 'A comparison theorem on maximum inequalities between negatively associated and independent random variables', Journal of Theoretical Probability, 13, 343-356 https://doi.org/10.1023/A:1007849609234
- SHAO, Q. M., Su, C. (2000). 'The law of iterated logarithm for negatively associated random variables', Stochastic Processes and their Applications, 83(1999),139-148 https://doi.org/10.1016/S0304-4149(99)00026-5
- STOUT, W. F. (1974). Almost sure convergence, Academic press, New York
- Su, C., ZHAO, L. C., WANG, Y. B. (1996). 'Moment inequalities and weak convergence for NA sequences', Science in China. Series A.), 26, 1091-1099 (in Chinese)
- Su, C., QIN, Y. S. (1997). 'Limit theorems for negatively associated sequences', Chinese Science Bulletin, 42, 243-246 https://doi.org/10.1007/BF02882446