ON THE COMPLETE CONVERGENCE OF WEIGHTED SUMS FOR DEPENDENT RANDOM VARIABLES

  • BAEK JONG-IL (School of Mathematical Science and Institute of Basic Natural Science, Wonkwang University) ;
  • PARK SUNG-TAE (Division of Business Administration, Wonkwang University) ;
  • CHUNG SUNG-Mo (School of Mathematical Science and Institute of Basic Natural Science, Wonkwang University) ;
  • LIANG HAN-YING (Department of Applied Mathematics, Tongji University) ;
  • LEE CHUNG YEL (School of Mathematical Science and Institute of Basic Natural Science, Wonkwang University)
  • Published : 2005.03.01

Abstract

Let {X/sun ni/ | 1 ≤ i ≤ n, n ≥ 1 } be an array of rowwise negatively associated random variables. We in this paper discuss the conditions of n/sup -1/p/ (equation omitted) →0 completely as n → ∞ for some 1 ≤ p < 2 under not necessarily identically distributed setting. As application, it is obtained that n/sup -1/p/ (equation omitted) →0 completely as n → ∞ if and only if E|X/sub 11/|/sup 2p/ < ∞ and EX/sub ni=0 under identically distributed case such that the corresponding results on i. i. d. case are extended and the strong convergence for weighted sums of rowwise negatively associated arrays is also considered.

Keywords

References

  1. ALAM, K. AND SAXENA, K. M. L. (1981). 'Positive dependence in multivariate distributions', Communications in Statistics-Ttieoru and Methods, A10, 1183-1196
  2. BAEK, J. I., KIM, T. S., LIANG, H. Y. (2003). 'On the convergence of moving average processes underdepende nt conditions', Australian & New Zealand Journal of Statistics, 45 (3), 901-912
  3. BLOCK, H. W., SAVITS, T. H., SHAKED, M. (1982). 'Some concepts of negative dependence', Annals of Probability, 10, 765-772 https://doi.org/10.1214/aop/1176993784
  4. EBRAHIMI, N., GHOSH, M. (1981). 'Multivariate negative dependence', Communications in Statistics-Theory and Methods, A10 (4), 307-337
  5. ERDos, P. (1949). 'On a theorem of Hsu and Robbins', Annals of Mathematical Statistics, 20, 286-291 https://doi.org/10.1214/aoms/1177730037
  6. Hsu, P. L., ROBBINS, H. (1947). 'Complete convergence and the law of large numbers', Procedings of the National Academy of Sciences, USA., 33, 25-31
  7. Hu, T. C., MoRICZ, F., TAYLOR, R. L. (1986). 'Strong laws of large numbers for arrays of rowwise independent random variables', Statistics Technical Report 27, University of Georgia
  8. Hu, T. C., MoRICZ, F., TAYLOR, R. L. (1989). 'Strong laws of large numbers for arrays of rowwise independent random variables', Acta Mathematica Hungarica, 54(1-2),153-162 https://doi.org/10.1007/BF01950716
  9. JOAG-DEv, K. (1990). 'Conditional negative dependence in stochastic ordering and interchangeable random variables', In: Block, H. W., Simpson, A. R., Savits, T. H.(Eds.), Topics in Statistical Dependence, IMS Lecture Notes
  10. JOAG-DEV, K., PROSCHAN, F.(1983). 'Negative association of random variables, with applications', Annals of Statistics, 11, 286-295 https://doi.org/10.1214/aos/1176346079
  11. KARLIN, S., RINOTT, Y. (1980b). 'Classes of orderings of measures and related correlation inequalities. II. Multivariate reverse rule distributions', Journal of Multivariate Analysis, 10, 499-516 https://doi.org/10.1016/0047-259X(80)90066-4
  12. LIANG,H.Y. (2000). 'Complete convergence for weighted sums of negatively associated random variables', Statistics & Probability Letters, 48 , 317-325 https://doi.org/10.1016/S0167-7152(00)00002-X
  13. LIANG, H. Y., Su, C. (1999). 'Complete convergence for weighted sums of NA sequence', Statistics & Probability Letters, 45, 85-95 https://doi.org/10.1016/S0167-7152(99)00046-2
  14. MATULA, P. (1992). 'A note on the almost sure convergence of sums of negatively dependent random variables', Statistics & Probability Letters, 15, 209-213 https://doi.org/10.1016/0167-7152(92)90191-7
  15. NEWMAN, C. M., WRIGHT, A. L. (1982). 'Associated random variables and martingale inequalities' , Zeitschrift Wahrscheinlichkeitstheorie und Verwandte Gebiete, 59, 361-371 https://doi.org/10.1007/BF00532227
  16. ROUSSAS, G. G. (1994). 'Asymptotic normality of random fields of positively or negatively associated processes', Journal of Multivariate Analysis, 50, 152-173 https://doi.org/10.1006/jmva.1994.1039
  17. SHAO, Q. M. (2000). 'A comparison theorem on maximum inequalities between negatively associated and independent random variables', Journal of Theoretical Probability, 13, 343-356 https://doi.org/10.1023/A:1007849609234
  18. SHAO, Q. M., Su, C. (2000). 'The law of iterated logarithm for negatively associated random variables', Stochastic Processes and their Applications, 83(1999),139-148 https://doi.org/10.1016/S0304-4149(99)00026-5
  19. STOUT, W. F. (1974). Almost sure convergence, Academic press, New York
  20. Su, C., ZHAO, L. C., WANG, Y. B. (1996). 'Moment inequalities and weak convergence for NA sequences', Science in China. Series A.), 26, 1091-1099 (in Chinese)
  21. Su, C., QIN, Y. S. (1997). 'Limit theorems for negatively associated sequences', Chinese Science Bulletin, 42, 243-246 https://doi.org/10.1007/BF02882446