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ON THE COMPLETE CCNVERGENCE OF WEIGHTED
SUMS FOR DEPENDZNT RANDOM VARIABLES!

JoNGg-IL BAEK!, SUNG-TAE PARK?, SUNG-Mo CHUNG?,
HAN-YING LiaNG* AND CHUNG YEL LEE®

ABSTRACT

Let {Xn; | 1 < ¢ < n, n > 1} be an array of rowwise negatively

associated random variables. We in this paper discuss the conditions of
k

i g < -
n 121,?%(”2 Xni — 0 completely as n — oo for some 1< p<2 un

i=1
der not necessarily identically distributed setting. As application, it is ob-
k

tained that n~1/? Jmax Xni — 0 completely as n — oo if and only
n
Sk<n =

if E|X11|*” < 00 and EX,; =0 under identically distributed case such
that the corresponding results on i.i.d. case are extended and the strong
convergence for weighted sums of rowwise negatively associated arrays is
also considered.
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1. INTRODUCTION

Zet {X,| n > 1} be a sequence of random variables. Hsu and Robbins(1947)
introduced the concept of complete convergence of {X,| n > 1}. A sequence
00

{Xn|n > 1} of random variables converges to a constant ¢ completely if Z P(|X,—

n=1
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¢| >¢€) < oo forall € >0. If X;, —> c completely, then the Borel-Cantelli lemma
implies that X,, — ¢ almost sure, but the converse is not true in general.

Let {X,k| 1 <k < n, n > 1} be an array of random variables with EX,; =0
for all » and k. Many authors studied the complete convergence of n-l/p Y i1 Xnk,
which is defined

n

o0
ZP(|n‘1/”ZXnkl >¢) <oo foreach € >0, (1.1)

where 0 < p < 2.

In particular, Erdos(1949) showed that for an array of independent identically
distribution (i.1.d.) random variables {X,x | 1 < k < n, n > 1}, (1.1) holds if
and only if E|X1;|% < co. Hu et al. (1986) showed that Erdds’ result could be
obtained by replacing the i.i.d. condition by the uniformly bounded condition.
We recall that an array {X,x | 1 <k <n, n > 1} of random variables is said to
be uniformly bounded by a random variable X if for all n and k and every real

number z > 0,
P(|Xne| > z) < P(IX] > z). (1.2)

Hu et al.(1989) had obtained the following result on complete convergence
and they had established (1.3) for non identically random variables when no
assumptions of independence between rows of the array is made.

THEOREM 1.1. Let {Xpx| 1 <k < mn, n > 1} be an array of rowwise inde-
pendent random variables with EX,;, = 0. Suppose that {X,x| 1 <k <n, n>1}
are uniformly bounded by some random variable X. If E|X|* < oo for some
1<p<2, then

n
n_l/”ZXnk —>» 0 completely as n — oo (1.3)
k=1

if and only if E|X11|2p < oo.

In this paper, we discuss the strong law of large numbers for weighted sums of
rowwise negatively associated random variables. The main purpose of this paper
is to extend and generalize Theorem A to rowwise negatively associated random
variables which satisfy suitable conditions, since independent and identically ran-
dom variables are a special case of negatively associated random variables, and
the strong convergence for rowwise negatively associated arrays is also considered.
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A finite sequence of random variables {X; | 1 <4 < n} is said to be negatively
associated (IVA) if for any two disjoint nonempty subsets A; and Ay of {1,--- ,n}
and f; and fy are any two coordinatewise nondecreasing functions,

Cov (fa(Xi, i€ A1), fo(X; G € Az)) <, (1.4)

whenever the covariance is finite. if for every n > 2, Xy, ---, X, are NA, then
the sequence {X; | ¢ € N} is said to be NA. This definition is introduced by Alam
and Saxena(1981). Many authors derived several important properties about N A
sequences and also discussed some applications in the area of statistics, proba-
bility, reliability and multivariate analysis. Compared to positively associated
random variables, the study of NA random variables has received less attention
in the literature. Readers may refer to Karlin and Rinott(1980b), Ebrahimi and
Ghosh(1981), Block et al.(1982), Newman and Wright(1982), Joag-Dev(1990),
Joag-Dev and Proschan(1983), Matula(1992) and Roussas(1994) among others.

Recently, some authors focused on the problem of limiting behavior of partial
sums of NA sequences. Su et al.(1396) derived some moment inequalities and
weak convergence for NA sequence, Su and Qin(1997) studied some limiting
results for N A sequences, Shao and Su (1999) discussed for law of the iterated
logarithm, Liang and Su (1999), Liang (2000), and Baek et al.(2003) considered
some complete convergence for weighted sums of N A sequences, some examples
and applications.

2. PRELIMINARIES

This section will contain some background materials which will be used in
obtaining the main results in the next section and a = O(b) means that there
exists some constant C > 0 such that @ < Cb, a* = max(0, a), a~ = max(0, —a).

LEMMA 2.1 (Joag and Proschan(1983)). Let Ay,---,Am be disjoint subsets

of {1,--- ,k} and f1, fo,--- , fm be increasing positive functions.
If{X;| 1<i<k}is NA, then

E]]5:(X;,5 € 4i) < [1E1:(%;,5 € 4).

=1 =1

LEMMA 2.2 (Hu et al.(1986)). For anyr > 1, E|X|" < 0o if and only if

z n"1P(|X| >en) <oco forany e >0.

n=1
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More precisely,

(o 0] o0
r2”" Yy nIP(IX| > n) < EIX[T < 14027) n"P(IX] > n).

n=1 n=1

LeEMMA 2.3 (Liang and Su(1999)). Let {X; | i > 1} be a sequence of NA
random wvariables and {an; | 1 < ¢ < n, n > 1} an array of real numbers. If
P(lréla.<x lan; X;| > €) < 8 for § small enough and n large enough, then

<isn

n

> Pllans X;1 > €) = OU)P . lans ;| > o
]:

for sufficient large n.

LEMMA 2.4 (Shao(2000)). Let {X; | i > 1} be a sequence of NA random
variables with EX; = 0 and E|X;|P < oo for some p > 1. Then, there exists
constant Cp, > 0 and Dy, > 0 such that

k n
Eggg«nlz;x,l _sz§1E|Xll for 1<p<2,
1= —

k n n
B max |3 X < Dy{(Y BXIP + 3 EIXiP} forp>2.
=T i=1 i=1

3. STRONG CONVERGENCE

THEOREM 3.1. Let {X,; |1<i<n, n>1} be an array of rowwise NA
random variables such that EX,; = 0. Suppose that there is a random vari-
able X such that P(|Xp;| > z) = O(1)P(|X| > z) for allz > 0. If E|X|% < o0
for some 1 < p < 2, then

k

n~L/P 1211?%(”; Xni = 0 completely as n — oo. (3.1)

THEOREM 3.2. Let1 <p<2, andlet {Xn; |1 <i<n, n>1} be an array
of rowwise NA random variables. Suppose that there is a random variable X
such that P(|X| > z) = O(1)P(|Xpi| > z) for all x > 0. Assume that (3.1) holds,

then E|X|? < 0o and limp_y00 (maxlgkgn Zle EXm/nl/p) =0.
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COROLLARY 3.1. Let 1 < p < 2, and let {Xp; |1 <i<mn, n>1} be an
array of rowwise NA random variables with EX,; = 0. Suppose that there is
a random variable X such that P(|Xp;| > ) = O(L)P(|X| > z) and P(|X| >
z) = O(1)P(|Xni| > z) for all z > 0. Then the following two statements are
equivalent:

(1) E|XP < oo;
k

—1/p
(2) n 1121’?.2% z‘ Xni — 0 completely as n — oo.

COROLLARY 3.2. Let 1 < p < 2, and let {Xp; |1<i<n, n>1} be an
array of identically distributed rowwise NA random variables. Then the following

two statements are equivalent:
(1) E|X11|? < oo and EXp; =C;

(2) n~\p 1211?3( me — 0 completely as n — oo.

THEOREM 3.3. Let {Xpn; | 1 <1 < kn, n > 1} be a sequence of rowwise
NA random wvariables such that EX,; = 0. Suppose that there is a random
variable X such that P(|Xpi| > z) = O()P(|X| > z) for all1 <i < kp,n >1
and £ > 0, which {kn|n > 1} is a sequence of positive integers. Assume that
{ani| 1 <1 < kn, n > 1} is an array of real numbers satisfying

s foni = O (logm) ) (3.2

1<i<kn

Zaii = 0((103 n)“1> (3.3)
i=1
If EetlX! < 0o for all t > 0, then

ZnﬂP(|Zam m|>s><oo forall €>0 and B> 0.

REMARK 3.1. The following example shows that Theorem 3.8 does not hold if
kn

the condition (3.3) is replaced by the weaker condition (3.4) Z a2, = O((logn)™1).
=1
ExAmpLE 3.1. Let {X, X;, i > 1} be a sequence of i.i.d. N(0,1) random
variables. Set

- 1/[logn], if 1 <1 < [logn],
"o, if logn]+1<i<mn,
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where [z] denotes the integer part of z. Then the condition (3.2) of Theorem 3.3
and the above condition (3.4) are easily satisfied.

Note that X ~ N(0,1), it follows that EetlX| < 2¢t*/2 for all ¢ > 0. Since
[logn]
Z X;/\/[logn] ~ N(0,1), we have by Lemma 5.1.1 in Stout(1974) that

=1

n [log n]
P(|Zam~Xi| > 1) = P(| Z X;/\/|logn] > \/[logn])
i=1 i=1
> 2exp{—[logn]} > 2/n

for all sufficiently large n, and so

o n
ZnﬂP<|Zam~Xi| > 1) =oo for all 8>0,
n=1 =1

i.e. Theorem 3.3 does not hold.

COROLLARY 3.3. Let {Xp;| 1 <i < kn, n>1} be a sequence of rowwise NA
random variables with EX,; = 0. Suppose that there is a random variable X such
thatP(| Xni| > ) = O(1)P(IX| > z) for all1 <i < kp,n > 1 and x > 0, which
{knln > 1} is a sequence of positive integers. Assume that {bp;| 1 <i<k,, n>

kn
1} is an array of constants satisfying le supr,zn- < 00. If Ee™X! < 0o for all
n—0o0
i=1

t >0, then

o] kn
ZnﬂP<me-Xm~ > elogn) < oo forany €>0.

n=1 =1

4. PROOF OF THEOREMS

In order to prove Theorem 3.1, choosing p < b < 2p and large integer N > 0
(to be specialized later), for all € > 0, we define that for 1 <i<n, n > 1,

Yi(1) = —nI( X, < —n'®) 4+ X I (| Xpi) < nl/%) 4+ nI( Xy > nl/?),
Yni(2) = (Xni — n0)I(n}/® < X < %nl/”)
Ym ) =

[(3) = (Xpi + 00 I(—n'/® > X,y > —%nl/”)
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Vii(4) = (Xni — n/O)[(Xpi > %nl/”) + (Xni + 0OV (Xns < ——%nl/”)

k
Surl) = Yui(l), 1 =1,2,3,4.
i=1
k 4
Then 121]??”2 lX = 1231?2{1;! 1Snk(l), and we know that {Yp;(1), 1 < ¢ <
n, n > 1} is still a array of rowwise NA random variables by the definition of

Yni(l)'
Therefore, to prove Theorem 3.1 it is sufficient to show that the following
(4.1), (4.2) and (4.3) hold:

P (max Snk(D)] > enl/P) < 00, 1=2,3,4 (4.1)
k
n-l/p 1?@n,;EY"i(1)’ —30 (4.2)
k
YP<1</c<n Z — EYy;(1))] > Enl/p) <oo forall e>0. (4.3)

The proofs of (4.1)-(4.3) can be found in the Lemmas 4.1-4.3 below.
LEMMA 4.1. If E|X|21’ < 00, then (4.1) holds:

1/p
P (jmax [Snk(2)] 2 en'/?) <00 (4.4)
> enl/? .
; P(max |Sne(3)] 2 en'/?) < oo (4.5)
[o ]
_JP lréll?x |5, (4)| > enl/?) < 0. (4.6)

PROOF. We cobserve from the definition of Y;(2) that ¥,;(2) > 0. Hence, by
usirg the N A property, we obtain that

oo

P (23 |Sn( )tZenl/")=Z_ij(snn(2)zen”")

P(there are at least N i's such that Yp;(2) # 0)

=
n=1
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o0
<> > P(Xpiy, >0l X > nl/)

n=11<4 <t < <ty <n
00 n N
<> {ZP(lew > nl/")]
n=1 L i=1
0o

1)) n~@/-DN(B| X |?P)N < 00

n=1

by choosing large N such that (2p/b—1)N > 1. Thus, (4.4) is proved. Note that
¥7i(3) <0, so similar to the arguments for (4.4), we can verify (4.5).
Finally, we prove (4.6). According to Lemma 2.2, we have

o0

> cnl/P
1P Zax. |Snk(4)| 2 en'/P)

ne
< Z Z P(| Xni| > ~n1/1’)

n= lz—
_ € 1/p
= ZO(I)nP(|X| > n'/?)
n=1 *
0(1) E|X|* < .
O

LEMMA 4.2. If E|X|? < oo for some 1 < p < 2 and EX,; = 0, then (4.2)
holds.

ProOF. Note that by EX,,; = 0, we have

k
—-1/p Y. . (1
n 1r;1,ggcn|;E ni(1)

n n

<72y B Xl (1 Xnil > n'*) 4+ P(1Xni] > n'?)
=1 i=1

=L+ D (say).

By E|X|% < oo and noticing p > 1, 2p/b > 1, we have

I =n" UPZ[ AP(1X ] > nl/?) / P( |Xm|>:1:)dz]
=1
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o0
= O(L)n~ WP+ p(|X| > nl/b) + 0(1)% / P(IX| > z)dz

[o.¢]
< O(1)n~We=1/6)-Cp/6-1) B X | 4+ O(1) 1/pE|Xl2p/ 2~ 2Pdr
nl/b
= 0(1)n-(1/p—1/b)—(2p/b—1)E|X|2p+O( yn—(/p= 1/b)—(2p/b—1)E|X|2p
— 0.

As to Iy, we have
I = }:P | Xni| > nl/?)

= 0( ) nP(|X[% > n?r/%)
< O()n~ G- EIX)|1?? — 0.

LEMMA 4.3. If E|X|* < oo, then (4.3) holds.

PROOF. Let ¢ > 2, according to Lemma 2.4, we have

ZP(KK,,'Z ) - BY(1)] 2 en'’)

q
Yn Q/pE<1<k<n|Z m EYm(l))l)
1) Z n—q/P{Z E|Ynl? + (Z E|Y,i|%)9?}
n=1 =1 =1

= I3 + I (say).

First, we prove that I3 < co. By assumptions, and noticing 1/p —1/b > 0,
we obtain that

Iy = 0(1) > n P {E| X |T(|Xni| < n'/?) + n9PP(|Xp| > n'/?)}
n=1 =1

co £ pi/b
1) an-q/z’{ /0 297 1P(|X| > z)dz +ntP(|X]| > nl/b)}
A

1) Z nl_q/p{ /
n=1 0

1) Zn—(l/p—l/b)q—(l’p/b—l)E|X|2p < 00

1/6

g 1¥E|X|*dz + nq/b—2p/"E|X|2P}
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by choosing large q.
Finally, note that E|X|? < oo implies Supy, ; E|Xy|* < oo, further
sup,, ; E|Y5i(1)]* < oo. Hence, by choosing large ¢, we have

o0
I, <0(1) En—(l/p'lmq < 00.

n=1

PROOF OF THEOREM 3.2. Note that (3.1) implies that for any € > 0,

|ZXm]>6n )—0 as n— 00
1<k<n

and

. .
1/p 4
le 1<k<n'ZXm| > enl/P) < (4.7)

Since maxj<k<n | Xnk| < 2maxicr<n | Zz 1 Xni|, according to Lemma 2.3, we
obtain that

n k
. 1/py — . 1/
Z;PﬂXml 2 En /p) = 0(1)P(1I<n,3§(n|§_;Xm| > en’/?),
1= - 1=

which, together with (4.7) and assumptions, we have

i zn: P(IX| > en'/?) <00

n=1 i=1
i.e.

x
> nP(IX| > en'?) <0

n=1
which is equivalent to E|X|* < oo by Lemma 2.2.
Now, under E|X|? < oo, we obtain from Theorem 3.1 that

oo k
z_:P 2| Z ni = EXni)| 2 en'/?) <oco forany €>0.  (48)

(47) and (48) yield limn_,oo (ma.xlgks,l Zf:l EXm./nl/p) =0. O
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PRCCF OF THEOREM 3.3. Since ap; = a:i it suffices to show that

m’

oo
En’sP {{ ;‘a Xni| > e) < oo forany ¢ >0, (4.9)
o0 / ’Cn

_JnﬁP‘\| Za;and > e) < oo forany £>0. (4.10)

o

n=

We prove cnly (4.9), the proof of (4.1C) is analogous. To prove (4.9), we need
only tc prove that

ZnﬁP/Z(ﬁXm >£> < oo for any € >0, (4.11)

EnﬂP/Zame < —s) < oo for any > 0. (4.12)

We first prove (4.11). By the definition of NA random variables, we know that
{a;fani| 1 <1< kp, n>1} is still an array of rowwise NA random variables.
From an inequality e* < 1+z+ %wzef‘”‘ for all z € R, using Lemma, 2.1, we obtain
for t = M logn/e, where M is a large constant and will be specified later on,

= [
nBP YaJer >€>

n= 1

k
<§ nBe el Bt Lili 0 X
— L

[e's) kn
< Sont-m [] pesinn
— L
n=1 i=1

00 kn
1
P MHE(I + ta} Xni + —2—t2( F)2X2et mlxml)

n=1 i 1

& Znﬁ MH /1 +C logn) (a )2Ee(l+C)|X1)

< Z‘nﬁ—M-l—e < 6o

n=1

provided M > (B + €) + 1, where C denote positive constant whose values are
unimportant and may vary at different place. Thus (4.11) is proved.
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By replacing X,,; by —X,; from the above statement and noticing {a;},(—Xy;)|
1 < i < ky, n> 1} is still an array of rowwise N A random variables, we know
that

o] kn
ZnﬁP<ZaT‘u~Xm~ < —e) < oo forany e > 0.

n=1 i=1

a

PROOF OF COROLLARY 3.3. Let ap; = byi/logn. Then, we can obtain the
result by Theorem 3.3. 0
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