ON THE RATIO X/(X + Y) FOR WEIBULL AND LEVY DISTRIBUTIONS

  • ALI M. MASOOM (Department of Mathematical Sciences Ball State University Muncie) ;
  • NADARAJAH SARALEES (Department of Statistics University of Nebraska Lincoln) ;
  • WOO JUNGSOO (Department of Statistics Yeungnam University Gyongsan)
  • 발행 : 2005.03.01

초록

The distributional properties of R = X/(X + Y) and related estimation procedures are derived when X and Y are independent and identically distributed according to the Weibull or Levy distribution. The work is of interest in biological and physical sciences, econometrics, engineering and ranking and selection.

키워드

참고문헌

  1. ALl, M. MASOOM AND Woo, J. (2004a). 'Inference on reliability P(Y < X) in ap-dimensional Rayleigh distribution (with J. Woo)', Mathematical and Computer Modelling (in press)
  2. ALl, M. MASOOM AND Woo, J. (2004b). 'Inference on P(Y < X) in the Levy case', Mathematical and Computer Modelling (in press)
  3. BOWMAN, K. O. AND SHENTON, L. R. (1998). 'Distribution of the ratio of gamma variates', Communications in Statistics-Simulation and Computation, 21, 1-19 https://doi.org/10.1080/03610919808813461
  4. CHENEY, W. AND KINCAID, D. (1994). Numerical Mathematics and Computing, Third edition, Brooks/Cole Publishing Co. Pacific Grove, California
  5. GRADSHTEYN, I.S. AND RYZHIK, I.M. (1965). Table of Integrals, Series and Products, Academic Press, New York
  6. HAWKINS, D. I. AND HAN, C. -P (1986). 'Bivariate distributions noncentral chi-square random variables', Communications in Statistics-Theory and Methods, 15, 261-277 https://doi.org/10.1080/03610928608829120
  7. HINKLEY, D. V. (1969). 'On the ratio of two correlated normal random variables' , Biometrika, 56, 635-639 https://doi.org/10.1093/biomet/56.3.635
  8. JOHNSON, N. L., KOTZ, S., AND BALAKRISHNAN, N. (1995). Continuous Univariate Distributions, Volume 2, John Wiley and Sons, New York
  9. KAPPENMAN, R. F. (1971). 'A note on the multivariate t ratio distribution', Annals of Mathematical Statistics, 42, 349-351 https://doi.org/10.1214/aoms/1177693518
  10. KORHONEN, P. J. AND NARULA, S. C. (1989). 'The probability distribution of the ratio of the absolute values of two normal variables', Journal of Statistical Computation and Simulation, 33, 173-182 https://doi.org/10.1080/00949658908811195
  11. LEE, R. Y., HOLLAND, B. S. AND FLUECK, J. A. (1979). 'Distribution of a ratio of correlated gamma random variables', SIAM Journal on Applied Mathematics, 36, 304-320 https://doi.org/10.1137/0136025
  12. MARSAGLIA, G. (1965). 'Ratios of normal variables and ratios of sums of uniform variables', Journal of the American Statistical Association, 60, 193-204 https://doi.org/10.2307/2283145
  13. MCCOOL, J. I. (1991). 'Inference on P{Y < X} in the Weibull case', Communications in Statistics-Simulation and Computation, 20, 129-148 https://doi.org/10.1080/03610919108812944
  14. MONTROLL, E. W. AND SHLESINGER, M. F. (1983). 'On the wedding of certain dynamical processes in discorded complex materials to the theory of stable (Levy) distribution functions', In: The Mathematics and Physics of Discarded Media, pp. 109-137, Springer-Verlag, Heidelberg
  15. O'REILLY, F. J. AND RUEDA, R. (1998). 'A note on the fit for the Levy distribution', Communications in Statistics-Theory and Methods, 27, 1811-1821 https://doi.org/10.1080/03610929808832191
  16. PHAM-GIA, T. (2000). 'Distributions of the ratios of independent beta variables and applications' Communications in Statistics-Theory and Methods, 29, 2693-2715 https://doi.org/10.1080/03610920008832632
  17. PRESS, S. J. (1969). 'The t ratio distribution', Journal of the American Statistical Association, 64, 242-252 https://doi.org/10.2307/2283732
  18. PROVOST, S. B. (1989). 'On the distribution of the ratio of powers of sums of gamma random variables', Pakistan Journal Statistics, 5, 157-174
  19. SHCOLNICK, S. M. (1985). 'On the ratio of independent stable random variables', Stability Problems for Stochastic Models (Uzhgorod, 1984), 349-354, Lecture Notes in Mathematics, 1155, Springer, Berlin