참고문헌
- ALl, M. MASOOM AND Woo, J. (2004a). 'Inference on reliability P(Y < X) in ap-dimensional Rayleigh distribution (with J. Woo)', Mathematical and Computer Modelling (in press)
- ALl, M. MASOOM AND Woo, J. (2004b). 'Inference on P(Y < X) in the Levy case', Mathematical and Computer Modelling (in press)
- BOWMAN, K. O. AND SHENTON, L. R. (1998). 'Distribution of the ratio of gamma variates', Communications in Statistics-Simulation and Computation, 21, 1-19 https://doi.org/10.1080/03610919808813461
- CHENEY, W. AND KINCAID, D. (1994). Numerical Mathematics and Computing, Third edition, Brooks/Cole Publishing Co. Pacific Grove, California
- GRADSHTEYN, I.S. AND RYZHIK, I.M. (1965). Table of Integrals, Series and Products, Academic Press, New York
- HAWKINS, D. I. AND HAN, C. -P (1986). 'Bivariate distributions noncentral chi-square random variables', Communications in Statistics-Theory and Methods, 15, 261-277 https://doi.org/10.1080/03610928608829120
- HINKLEY, D. V. (1969). 'On the ratio of two correlated normal random variables' , Biometrika, 56, 635-639 https://doi.org/10.1093/biomet/56.3.635
- JOHNSON, N. L., KOTZ, S., AND BALAKRISHNAN, N. (1995). Continuous Univariate Distributions, Volume 2, John Wiley and Sons, New York
- KAPPENMAN, R. F. (1971). 'A note on the multivariate t ratio distribution', Annals of Mathematical Statistics, 42, 349-351 https://doi.org/10.1214/aoms/1177693518
- KORHONEN, P. J. AND NARULA, S. C. (1989). 'The probability distribution of the ratio of the absolute values of two normal variables', Journal of Statistical Computation and Simulation, 33, 173-182 https://doi.org/10.1080/00949658908811195
- LEE, R. Y., HOLLAND, B. S. AND FLUECK, J. A. (1979). 'Distribution of a ratio of correlated gamma random variables', SIAM Journal on Applied Mathematics, 36, 304-320 https://doi.org/10.1137/0136025
- MARSAGLIA, G. (1965). 'Ratios of normal variables and ratios of sums of uniform variables', Journal of the American Statistical Association, 60, 193-204 https://doi.org/10.2307/2283145
- MCCOOL, J. I. (1991). 'Inference on P{Y < X} in the Weibull case', Communications in Statistics-Simulation and Computation, 20, 129-148 https://doi.org/10.1080/03610919108812944
- MONTROLL, E. W. AND SHLESINGER, M. F. (1983). 'On the wedding of certain dynamical processes in discorded complex materials to the theory of stable (Levy) distribution functions', In: The Mathematics and Physics of Discarded Media, pp. 109-137, Springer-Verlag, Heidelberg
- O'REILLY, F. J. AND RUEDA, R. (1998). 'A note on the fit for the Levy distribution', Communications in Statistics-Theory and Methods, 27, 1811-1821 https://doi.org/10.1080/03610929808832191
- PHAM-GIA, T. (2000). 'Distributions of the ratios of independent beta variables and applications' Communications in Statistics-Theory and Methods, 29, 2693-2715 https://doi.org/10.1080/03610920008832632
- PRESS, S. J. (1969). 'The t ratio distribution', Journal of the American Statistical Association, 64, 242-252 https://doi.org/10.2307/2283732
- PROVOST, S. B. (1989). 'On the distribution of the ratio of powers of sums of gamma random variables', Pakistan Journal Statistics, 5, 157-174
- SHCOLNICK, S. M. (1985). 'On the ratio of independent stable random variables', Stability Problems for Stochastic Models (Uzhgorod, 1984), 349-354, Lecture Notes in Mathematics, 1155, Springer, Berlin