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ON THE RATIO X/(X + V) FOR WEIBULL AND LEVY
DISTRIBUTIONS

M. MasooMm ALl', SARALEES NADARAJAH? AND JUNGSOO W0O?

ABSTRACT

The distributional properties of R = X/(X +Y) and related estima-
tion procedures are derived when X and Y are independent and identically
distributed according to the Weibull or Levy distribution. The work is of
interest in biological and physical sciences, econometrics, engineering and
ranking and selecticn.
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1. INTRODUCTION

For given random variables X and Y, the distribution of the ratio R =
X/(X +7Y) is of interest in biological and physical sciences, econometrics, en-
gineering and ranking and selection. For example, ratios of normal random
variebles appear as sampling distributions in single equation models, in simul-
taneous equations models, as posterior distributions for parameters of regres-
sion models and as modeling distributions, especially in economics when demand
models involve the indirect utility function. Other areas of applications include
Mendelian inheritance ratios in genetics, mass to energy ratios in nuclear physics,
ionic current fluctuations in biological membranes, target to control precipitation
in meteorology, and inventory ratios in economics. Another important area is
the stress-strength model in the context of reliability. It describes the life of a
component which has a random strength Y and is subjected to random stress
X. ""he component fails at the instant that the stress applied to it exceeds the
strength and the component will function satisfactorily whenever Y > X. Thus,

Received September 2004; accepted February 2005.
!Department of Mathematical Sciences Ball State University Muncie, IN 47306, USA
?Department of Statistics University of Nebraska Lincoln, NE 68583, USA
3Department of Statistics Yeungnam University Gyongsan, South Korea



12 M. MasooM ALl et al.

Pr(X <) is a measure of component reliability. It has many applications espe-
cially in engineering concepts such as structures, deterioration of rocket motors,
static fatigue of ceramic components, fatigue failure of aircraft structures and the
aging of concrete pressure vessels.

The distribution of the ratio R = X/(X + Y) has been studied by several
authors especially when X and Y are independent random variables and come
from the same family. For instance, see Marsaglia (1965) and Korhonen and
Narula (1989) for normal family, Press (1969) for Student’s ¢ family, Shcolnick
(1985) for stable family, Hawkins and Han (1986) for non-central chi-squared
family, Provost (1989) for gamma family, and Pham-Gia (2000) for beta family.

It seems that the distribution of R = X/(X + Y') has not been studied for
the Weibull case except for McCool (1991) where inference for P(X < Y) is
discussed. The Weibull distribution has popular applications in reliability and
quality control. The distribution is often suitable where conditions of ‘strict
randomness’ of the exponential distribution are not satisfied. It is also used as
a tolerance distribution in the analysis of quantal response data. The aim of
this paper is to derive distributional properties as well as estimation procedures
relating to R for Weibull and Levy distributions. Sections 2 and 3 of the paper
consider the Weibull case while the Levy case is considered in Sections 4 and 5.

2. DISTRIBUTION OF R FOR WEIBULL CASE

The Weibull distribution is widely used to model breaking strength of mate-
rials. The probability density function of a Weibull distribution (see Johnson et

al (1995)) is given by
gl () e

for 0 < z < oo, where the shape parameter o > 0 and the scale parameter 8 > 0.
Let X and Y be independent Weibull random variables with scale parameters 3,
and f3,, respectively, and common shape parameter a. To find the distribution
of the ratio R = X/(X +Y), let S = X +Y. Then the joint pdf of R and S can
be obtained as
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for 0 <7 < 1 and s > 0. By standard integration, the marginal pdf of R can be

obtained as
= (57) o ()Y e
R - pr2 r p r *

for 0 < r < 1, where p = (B;/By)*. The cdf of R corresponding to (2.2) can be

obtained as
! 1-7r -1
Fr(r) = <L1 tol—— (2.3)

for 0 < r < 1. By using the binomial expansion

(1+u)™* = i (—lk)ul,
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the kth moment of R can be expressed as
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i( lk){ 2, l/a—i—lil(ia+2 : —p)

=0
F2,(k+1)/a+ 1;(k+l)/a+2;—1/p)}

p2(k+l+a)

where the last step follows by using the integration identity

[ e = R 14 0
——pds = F (51 + s —fu
o (1+pz)” p meTE

(see equation (3.194.1), Gradshteyn and Ryzhik, 1965) and, where

ot z*

F al,az,b :E Z

k=0 k

denotes the Gauss hypergeometric function with (¢)y = c(c +1)---(c + k —
1) denoting the ascending factorial. Because (2.4) is an infinite sum of Gauss
hypergeometric functions (which are themselves infinite sums), further inferences
for the Weibull case will be mathematically intractable. Because of this difficulty,
we consider a particular case of the model given by (2.2) for & = 2. The problem is
that of the distribution of the ratio of two independent Rayleigh random variables.
For a = 2, the pdf and cdf in (2.2)-(2.3) reduce to

fR(T‘)=2PTl2<1;T> {1+p(1;r)2}_2 (2.5)

,,.2

r2 4+ p(1—r)?’

and
Fr(r) = (2.6)

respectively, for 0 < r < 1. By standard integration, the first four moments can
be obtained as

= [\/5{293/2 —mp+2/pln(p) + 7+ 2\/5}] / [2(1 + p)2],

E(R?) = [p{p2 —In(p) + 3y/pr — p*/?nr —3—2p+3pln(p) }]

[a+0?],
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E(R®) = - [p{18p2 — 1202 In(p) + 3/pm — 20° — 189%/ 21 + 18p — 2
+12p1n (p) + 3p5/27r}] / [2(1 + p)4],

and
E(RY) = - [p{36p2 +620% + 300%21 — 3p% — 1+ 60p In (p) + 69721
—6pln (p) — 300% In (p) — 30p — 60p5/27r}]

/[3(1 + p)*”].

3. ESTIMATION OF p IN THE RAYLEIGH CASE

Here, we consider estimation of the parameter p in (2.5). There are two
avenues one could pursue. Firstly, suppose X1, Xo,...,Xy and Y17,Y,...,Y, are
mutually independent random samples from (??) with scale parameters 3; and
By, respectively. Then, one possible estimator for p is p = (Bz / By)z, where £,
and By are the mles of B, and By, respectively. Ali and Woo (2004a) have derived
large sample properties of f.

Sometimes, only data on X/(X + Y) may be available. In these cases, the
abcve method cannot be applied and thus one needs an alternative. Suppose
Z1,%9,...,2, is a random sample from (2.5). Then, it is easily seen that the
maximum likelihood estimator (MLE) and the method of moments estimator
(MME) of p are given by
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respectively. We performed a simulation study of the behavior of these estimates
by using the bisection method in Cheney and Kincaid (1994) and the represen-

tation
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TABLE 3.1 Simulated averages and MSE’s of p and p.

p | n Average Values MSE

MME MLE MME MLE
10 | 2.487902  2.232903 | 0.8137303 0.4777965
15 | 2.446826  2.194685 | 0.7892309 0.4205423
2 | 20| 2.409786  2.119906 | 0.7621483 0.3989268
25 | 2.340853  2.156713 | 0.7363174 0.3905537
30 | 2.305748 2.101100 | 0.7348774 0.3639028
10 | 4.618302  4.415465 | 0.9348038 0.6171629
15 | 4.590697  4.366830 | 0.9318193 0.5503754
4 | 20 | 4.586234  4.286088 | 0.9231020 0.5439611
25 | 4.5800958  4.314435 | 0.9159698 0.5066198
30 | 4.569764  4.263897 | 0.9123034 0.4886514
10 | 8.491206  8.393456 | 0.2466729 0.2076182
15 | 8.491089  8.372853 | 0.2466039 0.2035710
8 | 20 | 8.487731  8.354048 | 0.2448812 0.1989511
25 | 8.484030  8.337543 | 0.2442199 0.1925811
30 | 8.478682  8.329282 | 0.2424818 0.1847957
10 | 10.499160 10.422820 | 0.2506164 0.2171517
15 | 10.496260 10.390760 | 0.2497279  0.2106311
10 | 20 | 10.488190 10.387750 | 0.2483347  0.2094065
25 | 10.481400 10.364010 | 0.2373241 0.2027673
30 | 10.476750 10.354840 | 0.2288843 0.1971724

(which follows from (2.6)), where U denotes a uniform random variable over
(0,1). Table 3.1 shows averages of the estimates p and j (averages taken over
1000 values) and the corresponding mean squared errors for n = 10(5)30 and
p = 2,4,8 and 10. We observe that the MLE has smaller mean squared errors
compared to the MME. Also, MME appears to over-estimate p more than MLE
does.

4. DISTRIBUTION OF R FOR LEVY CASE

The Levy distribution is a special case of the inverted gamma distribution
(see O’Reilly and Rueda (1998)). It also arises as a limiting case of the inverse
Gaussian distribution (see O’Reilly and Rueda (1998)). Formally, the pdf of the

Levy distribution is given by

f(z;0) = \/gm“:’ﬂ exp (—%) (4.1)
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for £ > 0 and o > 0. This distribution does not have moments of all orders, but
it has been useful in analysis of stock prices and has attracted applications in
physics (Montroll and Shlesinger (1883)).

Let X and Y Dbe independent Levy random variables with parameters o,
and oy, respectively. To find the distribution of the ratio R = X/(X +7Y), let
S =X +Y. Then the joint pdf of R and S can be obtained as

frstris) = Y2 )y e {5 (2 + 2 )|

o r i—r

for 0 <7 < 1 and s > C. Standard integration shows that the marginal pdf and
marginal cdf of R are

frlr) = ‘/‘fl_’r”—”yri? (1;’">—1/2 (ay+az1;’")_l (4.2)

and

4 -1/2
2 ‘ z1—
Fp(r) = ;arcsin{ (1 + Tz - 'r) }

9

for 0 < r < 1. Furthermore, the kth moment of R can be calculated as follows:
setting y = 1/r — 1, one can express

1 o\ -1/2 -l
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where the last step follows by application of the integration identity

/me(l +2) 7 (@ + B)dz = B(p— A NF (vp = A pi 1 - f)
0

(see equation (3.197.9), Gradshteyn and Ryzhik, 1965). Using standard proper-
ties of the Gauss hypergeometric function, the first four moments of R can be
expressed as

B(R) = VPP =), (43)
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Vo (2672 = 3p+1)
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/P (16p7/2 — 350% + 3502 — 21p + 5)
16 (p — 1)°
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5. ESTIMATION OF p IN LEVY CASE

As mentioned in Section 3, two methods for estimation of the parameter p in
(4.2) are possible. They are:

1. If Xy, Xs,..., X and Y1,Y5,. .., Y, are mutually independent random sam-
ples from (4.1) with scale parameters o, and oy, respectively, then one pos-
sible estimator for p is p = 6;/6,, where 6, and 6, are the mles of o, and
oy, respectively. Ali and Woo (2004b) have derived large sample properties
of p. This method cannot be applied when only data on X/(X +Y) are
available.

2. Since T = ,/p/(1+,/p) is a monotone increasing function of p, inferences on
p are equivalent to inferences on T' (this means that probability statements
about the estimator for p can be reexpressed as that of the estimator for T
and vice versa — see McCool (1991)). If Z1,Z,,..., Z, is a random sample
from (4.2) then it is immediate from (4.3) that

N 1<
is an unbiased and MSE-consistent estimator of T with

Var (Z) = —1—1(—1;—T)

Moreover, it follows by the central limit and Slutsky’s theorems that

Z-T
Z0 - 2)/n
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has the limiting standard normal distribution. Hence, large sample infer-
ences about T can be based ¢n normality. For instance, a 100(1 — )%
confidence interval for T is

- Z(1—-2) . Z(1—-2
z_za/Zv%vz'i'zaﬂv(T) ,

where 2,/o denotes the 100(1 — /2)% percentile of the standard normal
distribution.

ACKNCWLEDGEMENTS

The authors would like to thank the referees and the editor for carefully
reading the paper and for their great help in improving the paper.

REFERENCES

Avrr, M. MasooM AND Woo, J. (2004a). “Inference on reliability P(Y < X) in a p-dimensional
Rayleigh distribution (with J. Woo)”, Mathematical and Computer Modelling (in press).

Avrr, M. MascoM AND Woo, J. (2004b). “Inference on P(Y < X) in the Levy case”, Mathe-
matical and Computer Modelling (in press).

BewMan, K. O. AND SHENTON, L. R. (1998). “Distribution of the ratio of gamma variates”,
Communications in Statistics—Simulation and Computation, 27, 1-19.

CHENEY, W. AND XINCAID, D. (1994). Numerical Mathematics and Computing, Third edition,
Brooks/Cole Publishing Co. Pacific Grove, California.

GRADSHTEYN, 1.S. aAnND RyzHik, I.M. (1965). Table of Integrals, Series and Products, Aca-
demic Press, New York.

Hawkins, D. 1. anD Han, C. -P (19¢86). “Bivariate distributions noncentral chi-square
random variables”, Communications in Statistics—Theory and Methods, 15, 261-277.

HINKLEY, D. V. (1969). “On the ratio of two correlated normal random variables”, Biometrika,
56, 635-639.

JOHNSON, N. L., KoTz, S., AND BALAKRISHNAN, N. (1995). Continuous Univariate Distri-
butions, Volume 2, John Wiley and Sons, New York.

KAPPENMAN, R. F. (1971). “A note on the multivariate t ratio distribution”, Annals of
Mathematical Statistics, 42, 349-351.

KORHONEN, P. J. AND NaRruLA, S. C. (1989). “The probability distribution of the ratio
of the absolute values of two normal variables”, Journal of Statistical Computation and
Simulation, 33, 173-182.

Leg, R. Y., HoLLAND, B. S. AND FLUECK, J. A. (1979). “Distribution of a ratio of correlated
gamma random variables”, STAM Journal on Applied Mathematics, 36, 304-320.

MARSAGLIA, G. (1965). “Ratios of normal variables and ratios of sums of uniform variables”,
Journal of the American Statistical Association, 60, 193-204.

McCooL, J. 1. (1991). “Inference on P{Y < X} in the Weibull case”, Communications in
Statistics—Stmulation and Computation, 20, 129-148.



20 M. MASOOM ALI et al.

MONTROLL, E. W. AND SHLESINGER, M. F. (1983). “On the wedding of certain dynami-
cal processes in discorded complex materials to the theory of stable (Levy) distribution
functions”, In: The Mathematics and Physics of Discorded Media, pp. 109-137, Springer-
Verlag, Heidelberg.

O’REILLY, F. J. AND RUEDA, R. (1998). “A note on the fit for the Levy distribution”,
Communications in Statistics— Theory and Methods, 27, 1811-1821.

PHAM-GIA, T. (2000). “Distributions of the ratios of independent beta variables and applica-
tions” Communications in Statistics—Theory and Methods, 29, 2693-2715.

PrEss, S. J. (1969). “The ¢ ratio distribution”, Journal of the American Statistical Associa-
tion, 64, 242-252.

ProvosT, S. B. (1989). “On the distribution of the ratio of powers of sums of gamma random
variables”, Pakistan Journal Statistics, 5, 157-174.

SHCOLNICK, S. M. (1985). “On the ratio of independent stable random variables”, Stability
Problems for Stochastic Models (Uzhgorod, 1984), 349-354, Lecture Notes in Mathemat-
ics, 1155, Springer, Berlin.



