Intelligent Agent based on Bayesian Network for Smartphone

스마트폰을 위한 베이지안 네트워크 기반 지능형 에이전트

  • 한상준 (연세대학교 컴퓨터과학과) ;
  • 조성배 (연세대학교 컴퓨터과학과)
  • Published : 2005.02.01

Abstract

Today, mobile phones have become an essential item for man-to-man communication. As more people use mobile phones, various services based on mobile phone networks and high-end devices have been developed. In addition, with the growth of the concept of ubiquitous computing, there are many ongoing studies on novel and useful services in smartphone. In this paper, for personalized service in smartphone we propose an intelligent agent that uses user modeling based on bayesian network and rule based service selection mechanism. It infers the user's status such as his current affect, how he is busy, and how someone is familiar with him from personal information and communication history using bayesian network and Provides appropriate services on the basis of the inferred information. We apply it to some realistic situation to confirm the usefulness our proposed agent.

최근 이동전화가 사람 사이의 커뮤니케이션에 있어서 필수적인 수단으로 자리 잡고 있다. 사용사가 논어간에 따라 이동전화망을 이용한 각종 부가 서비스들이 개발되고 고성능의 단말기들이 등장하고 있다. 또한 유비쿼터스 컴퓨팅 개념의 발전과 더불어 스마트폰에서 여러 가지 새롭고 편리한 서비스를 제공하기 위한 연구가 활발히 진행되고 있다. 본 논문에서는 스마트폰에서의 개인화된 지능형 서비스를 위하여 베이지안 네트워크를 이용한 사용사 모델링과 규칙기반 서비스 선택기능을 갖춘 지능형 에이전트를 제안한다. 이 에이전트는 베이지안 네트워크를 사용하여 개인정보와 통신기록 자료로부터 사용사의 감정, 바쁨의 정도, 상대방과의 친밀도를 추론한 후 얻어진 정보를 사용하여 적절한 행동을 제시한다. 몇 가지 상황에 적용하여 제안한 지능형 에이전트의 유용성을 보인다

Keywords

References

  1. 정보통신부, '전기통신에 관한 연차 보고서', http://www.mic.go.kr, 2003
  2. International Data Corporation, 'Worldwide Mobile Phone QView,' 2003
  3. Pattie Maes, 'Agents that Reduce Work and Information Overload,' Communications of the ACM, vol. 37, no. 7, 1994 https://doi.org/10.1145/176789.176792
  4. T.M. Mitchell, R. Caruana, D. Freitag, J. McDermott and D. Zabowski, 'Experience With a Learning Personal Assistant,' Communications of the ACM, vol. 37, no. 7, pp. 80-91, 1994 https://doi.org/10.1145/176789.176798
  5. S. Schiaffino and A. Amandi, 'On the Design of a Software Secretary,' In Proceedings of the Argentine Symposium on Artificial Intelligence, pp. 218-230, 2002
  6. G. Boone, 'Concept Features in Re:Agent, an Intelligent Email Agent,' In Proceedings of the 2nd International Conference on Autonomous Agents, pp. 141-148, 1998 https://doi.org/10.1145/280765.280791
  7. D. Boyd and J. Potter, 'Social Network Fragments: An Interactive Tool for Exploring Digital Social Connections,' In Proceedings of SIGGRAPH, pp. 27-41, San Diego, CA, July 2003 https://doi.org/10.1145/965400.965437
  8. E. Horvitz, J. Breese, D. Heckerman, D. Hovel and K. Rommelse. 'The Lumiere project: Bayesian User Modeling for Inferring The Goals and Needs of Software Users,' In Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 256-265, Madison, WI, 1998
  9. J. Liu, C.K.Wong and K.K.Hui, 'An Adaptive User Interface Based on Personalized Learning,' IEEE Intelligent Systems, vol. 18, no. 2, pp. 52-84, 2003 https://doi.org/10.1109/MIS.2003.1193657
  10. F. Sparacino, 'Sto(ry)chastics: a Bayesian Network Architecture for User Modeling and Computational Storytelling for Interactive Spaces,' In Proceedings of the 5th International Conference on Ubiquitous Computing, pp. 54-72, Seattle, WA, October 2003
  11. A. Zipf, 'User-Adaptive Maps for Location Based Services for Tourism,' In Proceedings of 9th International Conference on Information and Communication Technologies in Tourism, 2002
  12. E. Charniak, 'Bayesian networks without tears,' AI Magazine, vol. 12, no. 4, pp. 50-63, 1991
  13. T. Stephenson, 'An introduction to Bayesian network theory and usage,' IDIAP-RR00-03, 2000
  14. R. Picard, 'Affective Computing,' Media Laboratory Perceptual Computing TR 321, MIT Media Laboratory, 1995
  15. Microsoft, Windows Mobile Software for Smartphone http://www.microsoft.com/windowsmobile/products/smartphone/default.mspx, 2003