DOI QR코드

DOI QR Code

Constitutive Analysis of the High-temperature Deformation Behavior of Two Phase Ti-6Al-4V Near-α Ti-6.85Al-1.6V and Single Phase-α Ti-7.0Al-1.5V Alloy

2상 Ti-6Al-4V 합금, 준단상 Ti-6.85Al-1.6V 및 단상 Ti-7.0Al-1.5V 합금의 고온 변형거동에 관한 연구

  • 김정한 (한국기계연구원) ;
  • 염종택 (한국기계연구원, 신기능재료연구부/소재성형센터) ;
  • 박노광 (한국기계연구원, 신기능재료연구부/소재성형센터) ;
  • 이종수 (포항공과대학교, 신소재공학과)
  • Published : 2005.11.01

Abstract

The high-temperature deformation mechanisms of a ${\alpha}+{\beta}$ titanium alloy (Ti-6Al-4V), near-a titanium alloy (Ti-6.85Al-1.6V) and a single-phase a titanium alloy (Ti-7.0Al-1.5V) were deduced within the framework of inelastic-deformation theory. For this purpose, load relaxation tests were conducted on three alloys at temperatures ranging from 750 to $950^{\circ}C$. The stress-versus-strain rate curves of both alloys were well fitted with inelastic-deformation equations based on grain matrix deformation and grain-boundary sliding. The constitutive analysis revealed that the grain-boundary sliding resistance is higher in the near-${\alpha}$ alloy than in the two-phase ${\alpha}+{\beta}$ alloy due to the difficulties in relaxing stress concentrations at the triple-junction region in the near-${\alpha}$ alloy. In addition, the internal-strength parameter (${\sigma}^*$) of the near-${\alpha}$ alloy was much higher than that of the ${\alpha}+{\beta}$ alloy, thus implying that dislocation emission/ slip transfer at ${\alpha}/{\alpha}$ boundaries is more difficult than at ${\alpha}/{\beta}$ boundaries.

Keywords

References

  1. T. R. Bieler, S. L. Serniatin, 2002, Inter. J. of Plasticity 18, 1165 https://doi.org/10.1016/S0749-6419(01)00057-2
  2. S. L. Semiatin, T. R. Bieler, 2001, Acta Mater. 49, 3565 https://doi.org/10.1016/S1359-6454(01)00236-1
  3. K. I. Suzuki, S. Watakabe, 2003, Met. Mater.-Int. Vol. 9, 359 https://doi.org/10.1007/BF03027188
  4. E. B. Shell, S.L. Semiatin, 1999, Metall. Mater. Trans. A 30A, 3219
  5. J. S. Kim, Y. W. Chang, C. S. Lee, 1998, Metall. Trans. A 29A, 217
  6. T. K. Ha, Y. W. Chang, 1998, Acta Mater. 46, 2741 https://doi.org/10.1016/S1359-6454(97)00473-4
  7. W. Bang, T. K. Ha, Y. W. Chang, 2000, Met. Mater.-Int. 3, 203
  8. J. H. Kim, T. K. Ha, Y. W. Chang, C. S. Lee, 2003, Metall. Mater. Trans. A 34A, 2165
  9. J. H. Kim, D. H. Shin, S. L. Semiatin, C. S. Lee, 2003, Mater. Sci. Eng. A344, 146
  10. E. W. Hart, 1984, Trans. ASME 106, 322 https://doi.org/10.1115/1.3260923
  11. S. L. Semiatin, S. L. Knisley, P. N. Fagin, F. Zhang, D.R. Barker, 2003, Metall. Mater. Trans. A, 34, 2377 https://doi.org/10.1007/s11661-003-0300-0
  12. J. H. Kim, S. L. Semiatin, C. S. Lee, 2003, Acta Mater. 51, 5613 https://doi.org/10.1016/S1359-6454(03)00426-9
  13. A. A. Salem, S. R. Kalidindi, R. D. Doherty, 2002, Scripta Mater., 46, 419 https://doi.org/10.1016/S1359-6462(02)00005-2
  14. S. L. Semiatin, T. R. Bieler, 2001, The second international conference on Light Material for Transportation systems held at Pusan, Korea, May 6-10, 2001, Edited by Nack J. Kim, C.S. Lee, and D. Eylon, p. 79
  15. H. J. Frost, M. F. Ashby, 1982, Deformation Mechanism Maps-The Plasticity and Creep of Metals and Ceramics, Pergamon press, pp. 6-16