밝기 왜곡을 고려한 윤곽선 근사화용 정점 선택 방법

Vertex selection method considering texture degradation for contour approximation

  • 최재각 (동의대학교 컴퓨터공학과) ;
  • 이시웅 (한밭대학교 정보통신컴퓨터공학부) ;
  • 고창림 (경일대학교 전자공학부) ;
  • 이종극 (동의대학교 컴퓨터공학과)
  • Choi Jae Gark (Dongeui University Dept. of Computer Engineering) ;
  • Lee Si-Woong (Hanbat National University Division of Information Communication and Computer Engineering) ;
  • Koh Chang-Rim (Kyungil University Dept. of Electronic Engineering) ;
  • Lee Jong-Keuk (Dongeui University Dept. of Computer Engineering)
  • 발행 : 2005.12.01

초록

본 논문에서는 다각형 기반 윤곽선 근사화를 위한 새로운 정점 선택 방법을 제안한다. 제안 방법은 전체 윤곽선을 부분 윤곽선으로 분할하고, 분할된 각 부분 윤곽선을 가변적 정확도에 따라 적응적으로 근사화한다. 근사화 정확도는 각 부분 윤곽선의 상대적 중요도에 의해 결정된다. 이때 근사화 오차 영역에서 발생하는 밝기 왜곡을 고려하여 각 부분 윤곽선의 상대적 중요도를 결정함으로써, 같은 윤곽선 데이터 량으로 보다 높은 재생영상의 화질 향상을 이룰 수 있다. 이러한 개념을 바탕으로 영역간 대조와 최대허용오차($d_{max}$)와의 관계식을 유도하고, 이 식을 이용한 적응적 정점 선택 방법을 제안한다. 실험 결과, 제안된 방법이 영상 부호화의 측면에서 기존 기법보다 우수한 성능을 나타내었다.

This paper presents a new vertex selection scheme for the polygon-based contour approximation. In the proposed method, the entire contour is partitioned into partial segments and they are approximated adaptively with variable accuracy. The approximation accuracy of each segment is controlled based on its relative significance. By computing the relative significance with the texture degradation in the approximation error region, the visual quality enhancement in the reconstructed frames can be achieved under the same amount of the contour data. For this purpose, a decision rule for $d_{max}$ is derived based on inter-region contrasts. In addition, an adaptive vertex selection method using the derived rule is proposed. Experimental results are presented to show the superiority of the proposed method over conventional methods.

키워드

참고문헌

  1. K. J. O'Connel, 'Object-adaptive vertex-based shape coding method,' IEEE Transactions on Circuits and Systems for Video Technology, 7(1), 251-255 (1997) https://doi.org/10.1109/76.554440
  2. F. Bossen and T. Ebrahimi, 'Region shape coding,' in ISO/IEC JTC1/SC29/WG11 MPEG95/377, Dallas, TX, (1995)
  3. MPEG Video Subgroup, 'MPEG-4 Video Verification Model (VM) version 1.0,' in ISO/IEC JTC1/SC29/WG11 (MPEG) N1172, (1996)
  4. C. Y. Choo and H. Freeman, 'An efficient technique for compressing chain-coded line drawing images,' in Conf. Rec. Twenty-Sixth Asilomar Conf. Signal, Systems and Comp., 2, 717-720 (1992)
  5. J. W. Chung, J. K. Kim, and J. H. Moon., 'Shape information reduction based on contour prediction and shape coding type,'in ISO/IEC JTC1/SC29/WG11 MPEG95/461, (1995)
  6. J. L. Kim, J. I. Kim, J. T. Lim, J. H. Kim, H. S. Kim, K. H. Chang, and S. D. Kim, 'Daewoo proposal for object scalability,' in ISO/IEC JTC1/SC29/WG11 MPEG 95/554, (1996)
  7. M. Lee and W. G. Chen, 'Microsoft proposal for MPEG4,' in ISO/IEC JTC1/SC29/WG11 MPEG 95/467, (1995)
  8. U. Ramer, 'An iterative procedure for the polygon approximation of planar curves,' Computer Graphics: Image Processing, 1, 244-256 (1972) https://doi.org/10.1016/S0146-664X(72)80017-0
  9. I. Pitas, Digital Image Processing Algorithms, NY: Prentice Hall (1993)
  10. B. J. Yun, S. W. Lee and S. D. Kim, 'Vertex adjustment method using geometric constraint for polygon-based shape coding,' Electronics Letters, 37(12), 754-755 (2001) https://doi.org/10.1049/el:20010531
  11. MPEG Video Group, 'Description of core experiments on shape coding in MPEG-4 video,' ISO/IEC JTC1/SC29/WG11 N1326, (1996)