A Review on Metabolic Pathway Analysis with Emphasis on Isotope Labeling Approach

  • 발행 : 2002.09.01

초록

The recent progress on metabolic systems engineering was reviewed based on our recent research results in terms of (1) metabolic signal flow diagram approach, (2) metabolic flux analysis (MFA) in particular with intracellular isotopomer distribution using NMR and/or GC-MS, (3) synthesis and optimization of metabolic flux distribution (MFD), (4) modification of MFD by gene manipulation and by controlling culture environment, (5) metabolic control analysis (MCA), (6) design of metabolic regulation structure, and (7) identification of unknown pathways with isotope tracing by NMR. The main characteristics of metabolic engineering is to treat metabolism as a network or entirety instead of individual reactions. The applications were made for poly-3-hydroxybutyrate (PHB) production using Ralstonia eutropha and recombinant Escherichia coli, lactate production by recombinant Saccharomyces cerevisiae, pyruvate production by vitamin auxotrophic yeast Toluropsis glabrata, lysine production using Corynebacterium glutamicum, and energetic analysis of photosynthesic microorganisms such as Cyanobateria. The characteristics of each approach were reviewed with their applications. The approach based on isotope labeling experiments gives reliable and quantitative results for metabolic flux analysis. It should be recognized that the next stage should be toward the investigation of metabolic flux analysis with gene and protein expressions to uncover the metabolic regulation in relation to genetic modification and/ or the change in the culture condition.

키워드

참고문헌

  1. Biotechnol. Prog v.16 Recent progress in biomolecular engineering Ryu D. D. Y.;D-H. Nam https://doi.org/10.1021/bp088059d
  2. Appl. Biotechnol v.38 Celluar and meta-bolic engineering an overview Cameron D. C.;I.-T. Tong https://doi.org/10.1007/BF02916416
  3. Science v.252 Toward a science of metabolic engineering Bailey J. E. https://doi.org/10.1126/science.2047876
  4. Curr. Opinion. Biotechnol v.5 Metabolic engineering Stephanopoulos G. https://doi.org/10.1016/S0958-1669(05)80036-9
  5. Biotechnol. Bioeng v.58 Metabolic engineering; techniques for analysis of targets for genetic manipulations Nielsen, J. https://doi.org/10.1002/(SICI)1097-0290(19980420)58:2/3<125::AID-BIT3>3.0.CO;2-N
  6. Science v.252 Network rigidity and metabolic engineering in metabolite overproduction Stephanopoulos, G.;J. J. Vallino https://doi.org/10.1126/science.1904627
  7. Biotechnol. Prog. v.9 Advances in metabolic control analysis Liao, J. C.;J. Delgado https://doi.org/10.1021/bp00021a001
  8. J. Chin. Inst. Chem. Eng v.31 An overview on metabolic systems engineering approach and its perspectives for efficient microbial fermentation Shimizu, K.
  9. Adv. Appl. Biotechnol. Metabolic pathway engineering; Systems analysis methods and their applications Shimizu, K.;J. J. Zhong(ed.)
  10. Principles and Methodorogies Metabolic Engineering Stephanopoulos, G.;A. A. Aristidou;J. Nielsen
  11. Matabolic Engineering Lee, S. Y.;T. Papoutsakis(eds.)
  12. Kagaku Kogaku Roubunshu v.2 Metabolic activities of yeast cells in batch culture Endo, I.;I. Inoue https://doi.org/10.1252/kakoronbunshu.2.416
  13. Kagaku Kogaku v.37 An analysis of yeast metaboism in continuous culture Inoue, I.;I. Endo https://doi.org/10.1252/kakoronbunshu1953.37.69
  14. J. Ferment. Bioeng. v.80 Metabolic pathway analysis of recombinant Saccharomyces cerevisiae with a galactose-inducible promoter based on a signal flow modeling approach Jin, S.;K. Ye;K. Shimizu https://doi.org/10.1016/0922-338X(96)87729-4
  15. Biotechnol. Bioeng v.35 Simple constrained-optimization view of acetate overflow in E. Coli. Majewski, R. A.;M. M. Damach https://doi.org/10.1002/bit.260350711
  16. Biotechnol. Bioeng v.42 An inte-grated metabolic modeling approach to describe the en-ergy efficiency of E. coli fermentations under oxygen-limited conditions;cellular enegetics, carbon flux and acetate production Ko, Y. F.;W. E. Bently;W. A. Weigand https://doi.org/10.1002/bit.260420709
  17. Biotechnol. Bioeng v.43 A meta-bolic model of celluar energetics and carbon flux during aerobic E. coli fermentation Ko, Y. F.;W. E. Bently;W. A. Weigand https://doi.org/10.1002/bit.260430903
  18. J. Ferment. Bioeng v.83 An inegrated metabolic pathway analysis based on metabolic signal flow dia-gram and celluar energetic for Saccharomyces cerevisiae Shi, H.;K. Shimizu https://doi.org/10.1016/S0922-338X(97)80992-0
  19. Biotechnol. Bioeng v.58 On-line metabolic path-way analysis based on metabolic signal flow dia-gram Shi, H.;K. Shimizu
  20. Biotechnol. Bioeng v.47 On-line state recognition in yeast fed-batch culture using er-ror vectors Shimizu, H.;K. Miura;S. Shioya;K. Suga https://doi.org/10.1002/bit.260470207
  21. Biotechnol. Bioeng v.41 Metabolic flux distributions in Corynebacterium glutamicum during growth and lysine overproduction Vallino, J. J.;G. Stephanopoulos https://doi.org/10.1002/bit.260410606
  22. Biotechnol. Bioeng v.45 Intracellular flux analysis in hybridomas using mass balances and in vitro $^{13}C$ NMR. Zupke, C.;G. Stephanopoulos https://doi.org/10.1002/bit.260450403
  23. Biotechnol. Bioeng v.49 Determination of the fluxes in the central metabolism of Corynebacterium Glutamicum by nuclear magnetic resonance spectroscopy combined with me-tabolite balancing Marx, A.;A. A. de Graaf;W. Wiechert;L. Eggeling;H. Shohm https://doi.org/10.1002/(SICI)1097-0290(19960120)49:2<111::AID-BIT1>3.0.CO;2-T
  24. PhD Thesis Computer-Aided Design of Biotechemical Pathways Mavrovouniotis, M. L.
  25. Preprint of the 7th Int. Conf. On Comp. Appl. In Biotechnol Fluxmap. A Visual Environment for Metabolic Flux Analysis of Bio-chemical Pathways Pissarra, P. N.;C. M. Henriksen
  26. J. Ferment. Bioeng v.84 Metabolic flux analysis for biosynthesis of poly(β-hydroxybutyric acid) in Alcaligenes eutrophus from various carbon sources Shi, H.;M. Shiraishi;K. Shimizu https://doi.org/10.1016/S0922-338X(97)81915-0
  27. Marchantia polymorpha. Biochem. Eng. J. v.6 Characterization of energy conversion based on metabolic flux analysis in mixotrophic liverwort cells Hata, J.;Q. Hua;C. Yang;K. Shimizu;M. Taya https://doi.org/10.1016/S1369-703X(00)00076-0
  28. Biochem. Eng. J. v.6 Energetics and carbon metabolism during growth of microalgal cells under photoautotrophic, mixotrophic and cyclic light-autotrophic/dark-heterotrophic conditions Yang, C.;Q. Hua;K. Shimizu https://doi.org/10.1016/S1369-703X(00)00080-2
  29. Biotechnol. Bioeng v.48 A metabolic network stochiometry analysis of microbial growth and product formation van Gulik, W. M.;J. J. Heijinen https://doi.org/10.1002/bit.260480617
  30. Biotechnol. Bioeng v.56 Stoichiometric model of Escherichia coli metabolism; incorporation of growth-rate dependent biomass composition and mechanistic energy requirements Pramanik, J.;J. D. Keasling https://doi.org/10.1002/(SICI)1097-0290(19971120)56:4<398::AID-BIT6>3.0.CO;2-J
  31. Biotechnol. Bioeng v.55 An on-line physiological state recognition system for the lysine fermentation process based on a metabolic reaction model Takiguchi, N.;H. Shimizu;S. Shioya https://doi.org/10.1002/(SICI)1097-0290(19970705)55:1<170::AID-BIT18>3.0.CO;2-Q
  32. Analytical Chemistry Symposia Series v.11 Heavy-atom isotope effects on enzyme-catalyzed reactions O'Leary, M. H.;H. L. Schmidt(ed.);H. Forstel(ed.);K. Heinzingler(ed.)
  33. Analytical Chemistry Symposia Series v.11 Parameters affecting the 13CO₂/12CO₂ discrimina-tion of the ribulose-1,5-bisphosphate carboxylase reac-tion Winkler, F. J.;H. Kexel;C. Kranz;H.-L. Schmidt
  34. Biothechnol. Bioeng v.55 Metabolic net-works;I. Modeling and simulation of carbon isotope la-belling experiments Wiechert, W.;A. A. de Graaf https://doi.org/10.1002/(SICI)1097-0290(19970705)55:1<101::AID-BIT12>3.0.CO;2-P
  35. Biotechnol. Prog. v.10 Modeling of isotope distributions and intracellular fluxes in metabolic networks using atom mapping matrices Zupke, C.;G. Stephanopoulos https://doi.org/10.1021/bp00029a006
  36. Biotechnol. Bioeng v.55 Modeling isotopomer distributions in biochemical networks using isotopomer mapping matrices Schmidt, K.;M. Carlsen;J. Nielsen;J. Villadsen https://doi.org/10.1002/(SICI)1097-0290(19970920)55:6<831::AID-BIT2>3.0.CO;2-H
  37. Biotechnol. Bioeng v.62 Mass spectrometry for metalbolic flux analysis Wittmann, C.;E. Heinzle https://doi.org/10.1002/(SICI)1097-0290(19990320)62:6<739::AID-BIT13>3.0.CO;2-E
  38. Metabolic Eng v.1 Isotopomer analysis using GC-MS Christensen, B.;E. Heinzle https://doi.org/10.1006/mben.1999.0117
  39. J. Biotechnol v.71 Quantita-tive analysis of metabolic fluxes in Escherichia coli, using two-dimensional NMR spectroscopy and complete iso-topomer models Schmidt, K.;J. Nielsen;J. Villadsen https://doi.org/10.1016/S0168-1656(99)00021-8
  40. J. Biosci. Bioeng. v.92 Quantitative analysis of intracellular metabolic fluxes using GC-MS and two-dimensional NMR spectroscopy Yang, C.;Q. Hua;K. Shimizu https://doi.org/10.1263/jbb.92.277
  41. Eur. J. Biochem v.232 Bioshynthetically directed fractional 13C-labeling of proteinogenic amino acids;An efficient analytical tool to investigate intermediary metabolism Szyperski, T. https://doi.org/10.1111/j.1432-1033.1995.tb20829.x
  42. Biol. Mass Spectrometry v.20 Theoretical and prac-tical consinderations Lee, W.-N.P.;L. O. Byerley;E. A. Berner;J. Edmond https://doi.org/10.1002/bms.1200200804
  43. Biol. Mass Spectrometry v.21 Mass isotopomer patterns and precurser-product relationship Lee, W.-N.P.;E. A. Bergner;Z. K. Guo https://doi.org/10.1002/bms.1200210210
  44. Biotechnol. Bioeng v.62 Metabolite and istopomer balancing in the analysis of metabolic cycles;I. Theory Klapa, M. I.;S. M. Park;A. J. Sinskey;G. Stepha-nopoulos https://doi.org/10.1002/(SICI)1097-0290(19990220)62:4<375::AID-BIT1>3.0.CO;2-O
  45. Biotechnol. Bioeng v.62 Metabolite and isotopomer balancing in the analysis of metabolic cycles Park, S. M.;M. I. Klapa;A. J. Sinskey;G. Stephanopoulos https://doi.org/10.1002/(SICI)1097-0290(19990220)62:4<392::AID-BIT2>3.0.CO;2-S
  46. Biotechnol. Bioeng v.55 Metabolic networks: II. Flux estimation and statistical analysis Wiechert, W.;C. Siefke;A. A. de Graaf;A. Marx https://doi.org/10.1002/(SICI)1097-0290(19970705)55:1<118::AID-BIT13>3.0.CO;2-I
  47. Biotechnol. Bioeng v.66 Bidirectional reaction steps in metabolic networks: III. Explicit solution and analysis of isotopomer labeling systems Wiechert W.;M. Mollney;N. Isermann;M. Wurzel;A. A. de Graaf https://doi.org/10.1002/(SICI)1097-0290(1999)66:2<69::AID-BIT1>3.0.CO;2-6
  48. Biotechnol. Bioeng v.60 Bidirectional reaction steps in metabolic networks: IV. Optimal design of isotopomer labeling experiments Mollney, M.;W. Wiechert;D. Kownatzki;A. A. de Graaf
  49. Biotechnol. Bioeng v.68 Metabolic network analysis of P. chrisogenum using $^{13}C$-labeled glucose Christensen, B.;J. Nielsen https://doi.org/10.1002/(SICI)1097-0290(20000620)68:6<652::AID-BIT8>3.0.CO;2-J
  50. Metabolic Eng. Metabolic flux analysis in Synechocystis using isotope distribution from $^{13}C$-labeled glucose Yang, C.;Q. Hua;K. Shimizu
  51. Biotechnol. Bioeng v.31 MPS: An artificially intelligent software system for the analysis and synthesis of metabolic pathways Seressiotis, A.;J.E. Bailey https://doi.org/10.1002/bit.260310611
  52. Biotechnol. Bioeng v.36 Computer-aided sysnthesis of biochemical pathways Mavrovouniotis, M. L.;G. Stephanopoulos;G. Stephanopoulos https://doi.org/10.1002/bit.260361107
  53. FEMS Mi-crobiol. Rev. v.19 Flux analysis and control of the central metabolic pathways in Escherichia coli Holms, W. H. https://doi.org/10.1111/j.1574-6976.1996.tb00255.x
  54. J. Biosci. Bio-eng v.87 Effect of modifying metabolic network on poly (3-hydroxybutyrate) biosynthesis in recobminant Escherichia coli Shi, H.;J. Nikawa;K. Shimizu https://doi.org/10.1016/S1389-1723(99)80132-7
  55. J. Ferment. Bioeng v.86 Modification of metabolic pathways of S.cerevisiae by the expression of lactate dehydrogenase and deletion of Pyruvate decalboxylase genes for the lactic acid fermentation at low pH value Adachi, E.;M. Torigoe;M. Sugiyama;J. Nikawa;K. Shimizu https://doi.org/10.1016/S0922-338X(98)80131-1
  56. J. Ferment. Bioeng v.78 Fermentation production of pyruvate from glucose by Torulopsis glabrata Yonehara, T.;R. Miyata https://doi.org/10.1016/0922-338X(94)90255-0
  57. J. Fermem. Bioeng v.82 Improvement of fermentative production of pyruvate from glucose by Torulopsis glabrata IFO 0005 Miyata, R.;T. Yonehara https://doi.org/10.1016/S0922-338X(97)86986-3
  58. J. Biosci. Bioeng v.87 Metabolic flux analysis for efficient pyruvate fermentation using vitamin-auxotrophic yeast of T. glabrata Hua, Q.;C. Yang;K. Shimizu https://doi.org/10.1016/S1389-1723(99)89014-8
  59. J. Biotechnol v.68 Effect of dissolved oxygen concerntration on the intracellular flux distribution for pyruvate fermentation Hua, Q.;K. Shimizu https://doi.org/10.1016/S0168-1656(98)00196-5
  60. Biotechnol. Prog. Effect of glucose, vitamins, and DO concerntrations on the pyruvate fermentation using T. glabrata IFO 0005 with metabolic flux analysis Hua, Q.;C. Yang;K. Shimizu
  61. Biotechnol. Prog. v.13 Inverse flux analysis for reduction of acetate excretion in Escherichia coli Delgado, J.;J.C. Liao https://doi.org/10.1021/bp970047x
  62. Symp. Soc. Exp. Biol v.27 The control of flux Kacser, H.;J. A. Burns
  63. Eur. J. Biochem v.42 A linear steadystate treatment of enzymatic chains: General properties, control and effector strength Heinrich, R.;T. A. Rapoport https://doi.org/10.1111/j.1432-1033.1974.tb03318.x
  64. Biotechnol. Prog v.14 Flux calculation using metabolic control constraints Liao, J. C.;J. Delgado https://doi.org/10.1021/bp980056l
  65. Chem. Eng. Sci. v.52 A general formalism for metabolic control analysis Ehlde, M.;G. Zacchi https://doi.org/10.1016/S0009-2509(97)00076-6
  66. Eur. J. Biochem. v.187 Enzyme-enzyme interactions and control analysis. 1. The case of non-additivity: Monomer-oligomer associations Kacser, H.;H. Sauro;L. Acerenza https://doi.org/10.1111/j.1432-1033.1990.tb15329.x
  67. J. Biosci. Bioeng v.80 Development of a kinetic model for L-lysine biosynthesis in Corynebacterium glutamicum and its application to metabolic control analysis Yang, C.;Q. Hua;K. Shimizu
  68. J. Biosci. Bioeng v.90 Metabolic control analysis of lysine biosynthesis in Corynebacterium glutamicum with experimental verfication Hua, Q.;C. Yang;K. Shimizu
  69. Biotechnol. Prog. v.11 Metabolic control analysis of the penicillin biosynthetic pathway in a high-yielding strain of Penicillium chrisogenum Nielsen J.;H. S. Jorgensen https://doi.org/10.1021/bp00033a010
  70. Biochem. J. v.286 Metabolic control analysis: A survey of its theoretical and experimental development Fell, D. https://doi.org/10.1042/bj2860313
  71. Chem. Eng. Sci. v.52 Flux amplification in complex metabolic networks Stephanopoulos, G.;T. W. Simpson https://doi.org/10.1016/S0009-2509(97)00077-8
  72. Biotechnol. Bioeng v.58 Experimental determination of group flux control coefficients in metabolic networks Simpson, T. W.;H. Shimizu;G. Stephanopoulos
  73. Chem. Eng. Sci. v.52 Dynamic sensitivity analysis for metabolic systems Mauch, K.;S. Arnold;M. Reuss https://doi.org/10.1016/S0009-2509(97)00075-4
  74. Biotechnol. Bioeng v.55 In vivo analysis of metabolic dynmics in Saccharomyces cerevisiae: I. Experimental observations Theobald, U.;W. Mailinger;M. Baltes;M. Rizzi;M. Reuss https://doi.org/10.1002/(SICI)1097-0290(19970720)55:2<305::AID-BIT8>3.0.CO;2-M
  75. Biotechnol. Bioeng v.55 In vivo analysis of metabolic dynamics in Sacchromyces cerevisiae: II. Mathematical model Rizzi, M.;M. Baltes;V. Theobald;M. Reuss https://doi.org/10.1002/(SICI)1097-0290(19970820)55:4<592::AID-BIT2>3.0.CO;2-C
  76. Biotechnol. Prog. v.15 Metabolic engineering from a cybernetic perspective: 1. Theoretical prelimi-naries Varner, J.;D. Ramkrishna https://doi.org/10.1021/bp990017p
  77. Biotechnol. Prog v.15 Metabolic engineering from a cybernetic perspectivel: 2. Qualitative inestigation of nodal architectures and their response to genetic perturbation Varner, J.;D. Ramkrishna https://doi.org/10.1021/bp990018h
  78. Biotechnol. Bioeng v.36 Group contributions for estimating standard gibbs energies of formation of biochemical compounds in aqueous solutions Mavrovouniotis, M. L. https://doi.org/10.1002/bit.260361013
  79. International Conf. On Intelligent System for Molecular Biology Identification of localized and distributed bottlenecks in metabolic pathways Mavrovouniotis, M. L.
  80. Biotechnol. Prog v.13 Thermodynamics of metabolic pathways for penicillin production: Analysis of thermodynamic feasibility and free energy changes during fed-batch cultivation Pissarra, P. N.;J. Nielsen https://doi.org/10.1021/bp970010c
  81. Math. Biosci v.86 Biochemical systems theory and metabolic control theory: 1. Fundamental similarities and differences Savageau, M.A.;E.O. Voit;D.H. Invine https://doi.org/10.1016/0025-5564(87)90007-1
  82. Math. Biosci v.86 Biochemical systems theory and metabolic control theory: 2. The role of summation and connectivity relationships Savageau, M. A.;E. O. Voit;D. H. Invine https://doi.org/10.1016/0025-5564(87)90008-3
  83. Biotechnol. Bioeng v.52 Optimization of regulatory architectures in me-tabolic reaction networks Hatzimanikatis, V.;C.A. Floudas;J.E. Bailey https://doi.org/10.1002/(SICI)1097-0290(19961120)52:4<485::AID-BIT4>3.0.CO;2-L
  84. Comp. Chem. Eng. v.17 Simulation and optimization of metabolic pathways Regan, L.;D. Bogle;P. Dunnill https://doi.org/10.1016/0098-1354(93)80050-W
  85. Biotechnol. Bioeng v.40 Optimization in integrated biochemical systems Voit, E. O. https://doi.org/10.1002/bit.260400504
  86. AIChE J. v.42 Analysis and design of metabolic reaction networks via mixed-integer linear optimization Hatzimanikatis, V.;C. A. Floudas;J. E. Bailey https://doi.org/10.1002/aic.690420509
  87. J. Theor. Biol v.182 MCA has more to say Hatzimanikatis, V.;J. E. Bailey https://doi.org/10.1006/jtbi.1996.0160
  88. Biochem. Eng. J. Design of metabolic regulatory structures for enhanced lysine synthesis flux using (log) linearized kinetic models Hua, Q.;C. Yang;K. Shimizu
  89. J. Ferment. Bioeng v.82 Efficient production of Vitamin $B_12$ from propionic acid bacteria under periodic variation of dissolved oxygen concetration Ye, K.;M. Shijo;S. Jin;K. Shimizu https://doi.org/10.1016/S0922-338X(97)86988-7
  90. Biotechnol. Prog. v.15 Metabolic pathway of Propionibacterium growing with oxygen;Enzymes, $^{13}C NMR analysis and its application for vitamin $B_12$ production with periodic fermentation Ye, K.;M. Shijo;K. Miyano;K. Shimizu https://doi.org/10.1021/bp990012s
  91. Biotechnol Prog v.15 Toward metabolic phenomics: Analysis of genomic data using flux balances Schilling, C. H.;J. S. Edwards;B. O. Palsson https://doi.org/10.1021/bp9900357
  92. Biotechnol. Prog v.15 Functional genomic technologies: Creating new paradiums for fundamental and applied biology Kao, C. M. https://doi.org/10.1021/bp990027q
  93. Cell v.80 Characterization of the yeast transcriptome Velculescu, V. E.;L. Zhang;W. Zhou;J. Vogelstein;M. A. Basrai;D. E. J. Bassett;P. Hieter;B. Vogelstein;K. W. Kinzler
  94. Science v.278 Exploring the metabolic and genetic control of gene expression on a genomic scale DeRishi, J. L.;V. R. Iyer;P. O. Brown https://doi.org/10.1126/science.278.5338.680
  95. Biotechnol. Prog v.15 Pro-teomics;Theoretical and experimental considerations Hatzimanikatis, V.;L. H. Choe;K. H. Lee https://doi.org/10.1021/bp990004b
  96. Escherichia coli K-12 in silico;Definition of its metabolic genotype and analysis of its capabilities Edwards, J. S.;B. O. Palsson
  97. Appl. Microbiol. Bioeng v.58 Integration of the information from gene expression and metabolic fluxes for the analysis of the regulatory mechanisms in Synechocystis Yang, C.;Q. Hua;K. Shimizu https://doi.org/10.1007/s00253-002-0949-0