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Abstract The recent progress on metabolic systems engineering was reviewed based on our re-
cent research results in terms of (1) metabolic signal flow diagram approach, (2) metabolic flux
analysis (MFA) in particular with intracellular isotopomer distribution using NMR and/or GC-MS,
(3) synthesis and optimization of metabolic flux distribution (MFD), (4) modification of MFD by
gene manipulation and by controlling culture environment, (5) metabolic control analysis (MCA),
(6) design of metabolic regulation structure, and (7) identification of unknown pathways with
isotope tracing by NMR. The main characteristics of metabolic engineering.is to treat metabolism
as a network or entirety instead of individual reactions. The applications were made for poly-3-
hydroxybutyrate (PHB) production using Ralstonia eutropha and recombinant Escherichia coli, lac-
tate production by recombinant Saccharomyces cerevisiae, pyruvate production by vitamin auxotro-
phic yeast Toluropsis glabrata, lysine production using Corynebacterium glutamicum, and energetic
analysis of photosynthesic microorganisms such as Cyanobateria. The characteristics of each ap-
proach were reviewed with their applications. The approach based on isotope labeling experi-
ments gives reliable and quantitative results for metabolic flux analysis. It should be recognized
that the next stage should be toward the investigation of metabolic flux analysis with gene and
protein expressions to uncover the metabolic regulation in relation to genetic modification and/ or
the change in the culture condition.
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INTRODUCTION

The recent progress in biotechnology enables us to
improve the quality of our lives and environment, and
its research field has been expanded from basic science
to engineering such as (1) bicinformatics including
functional genomics and proteomics, (2) protein engi-
neering including protein structure - function and
structure — activity relationships ezc., (3) recombinant
techniques including random mutation, DNA shuffling,
and phage — display technique, (4) metabolic engineer-
ing, and (5) bioprocess engineering [1].

Metabolic engineering has been defined as “purposeful
modification of intermediary metabolism using recom-
binant DNA techniques” [2]. Originally, the term meta-
bolic engineering has been defined as “improvement of
cellular activities by manipulation of enzymatic trans-
port and regulatory functions of the cell with the use of
recombinant DNA technology” [3]. In a broader sense,
metabolic engineering can be viewed as the design of
biochemical reaction networks to accomplish a certain
objective. Typically, the objective is either to increase
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the rate of a desired product or to reduce the rate of
undesired side-products [4], or to decompose the toxic
or undesired substances. Of central importance to this
field is the notion of cellular metabolism as a network.
In other words, an enhanced perspective of metabolism
and cellular function can be obtained by considering the
participating reactions in their entirety, rather than on
an individual basis [4]. This research field is, therefore,
multidisciplinary, drawing on information and tech-
niques from biochemistry, genetics, molecular biology,
cell physiology, chemistry, chemical engineering, sys-
tems science, and computer science.

Although the term metabolic engineering has been
defined as above, its definition is by no means clear-cut,
and overlaps with the related terms such as physiologi-
cal engineering [5], pathway engineering, in vitro evolu-
tion, direct evolution, molecular breeding, cellular engi-
neering as listed in Cameron and Tong [2]. It should
also be noted that the metabolic regulation be investi-
gated with respect to gene and protein expressions to
understand the overall picture.

The intellectual framework and the potential applica-
tion of metabolic engineering have been reviewed {3,6),
and yet another reviews have been made to recognize
the importance of metabolic engineering [2,5,7-9]. Sev-
eral books have also been published recently {10,11].
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In the present article, an overview on metabolic sys-
tems engineering approach is made for the efficient
fermentation based on our recent research results with
the emphasis on isotope labeling technique.

METABOLIC SIGNAL FLOW DIAGRAM
APPROACH ‘

In principle, the metabolic networks can be expressed
in terms of a directed signal flow diagram [12,13].
Therefore, the enzyme reaction of conversion of me-
tabolite A to metabolite B can be considered as the
transformation of signal A to signal B. If we consider
the metabolic network of a cell as a system, there are
several inputs and outputs through the boundary of the
system with the environment. Then those input-
output relationships may be expressed in terms of the
metabolic transfer coefficients. The resulting complex
signal flow diagram can be simplified through use of the
equivalent transformation of the graph theory. It
should be noted that the input-output relationship may
be identified from the time-series data. Then we may be
able to find some relationships on the metabolic trans-
fer coefficients, and thus we may be able to estimate
the activities of certain pathway networks [12,14].

In relation to this approach, an interesting network
analysis method has been proposed for formulation of a
metabolic model for Escherichia coli by several research-
ers [15-17]. In their works, a metabolic objective pro-
vides a physiological rationale for acetate production,
which is based on mechanistic details considered as
constraints on the reaction network.

In the same manner, we assumed that a microorgan-
ism has as its objective maximization of ATP produc-
tion and derived the expression of the metabolic trans-
fer coefficients [18]. Such expression enables us to un-
derstand how the important branch points are regu-
lated based on the time-series input and output data.
This method was extended for use in on-line estimation
[19]. For the on-line analysis, Shimizu et al. [20] defined
an error vector based on stoichiometric equations, and
they attempted to identify the unknown metabolites
based on the magnitude of such an error vector due to
unbalance of material.

METABOLIC FLUX ANALYSIS

Quantification of metabolic fluxes is an important
analysis technique of metabolic engineering. A powerful
technique for calculation of the fluxes through various
pathways is the so-called metabolic flux analysis (MFA),
where the intracellular fluxes are calculated using a
stoichiometric model for all the major intracellular reac-
tions and by applying mass balances around the intra-
cellular metabolites. As inputs to the calculations, a set
of measured fluxes, typically the specific uptake rate of
substrate and the specific secretion rate of metabolites
etc. are provided [21-23]. Metabolic flux distribution
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can then be estimated using the following stoichiomet-
ric equation:

Ar=gq 1)

where A is an m x 1 matrix of stochiometric coefficients.
r is an n-dimensional flux vector, and 4 is an m-
dimensional vector of the specific substrate consump-
tion rate and the specific metabolite excretion rates.
The weighted least square solution to Eq. (1) is then
obtained for the over-determined system as

r= (AT A) AT dy @)

provided that A is of full rank, where @ is the meas-
urement noise variance-covariance matrix of the meas-
urement vector 4. Several computer programs for calculat-
ing r have been developed by several researchers [24,25).

We made flux analysis based on this approach for effi-
cient production of poly B-hydroxybutyrate (PHB) us-
ing Ralstonia eutropha. PHB is a homopolymer of 3-
hydroxybutyrate and is most widespread and best-
characterized member of poly-3-hydroxyalkanoates
(PHAs). We conducted several fed-batch experiments
for several substrates, and computed the flux distribu-
tion for the subdivided growth, transient, and PHB
production phases.

Note that NH; concentration was relatively high dur-
ing cell growth phase while it was low during the later
PHB production phase. Because of this, the ammonium
ion was dominantly assimilated into the cell through
the reaction from a-ketoglutarate (a-KG) to glutamic
acid (GLUT) during cell growth phase. It should also be
noted that NADPH generated via isocitrate dehydro-
genase (ICD) was mainly consumed in glutamic acid
synthesis pathway during this phase. We estimated
how much and where NADPH was produced and con-
sumed in each cultivation phase based on the flux dis-
tribution obtained. The result clearly indicates that the
block in the glutamic acid synthetic pathway due to
low level of NH; in the later phase results in the over-
production of PHB due to increased availability of
NADPH formed through ICD, since NADPH-depen-
dent acetoacetyl-CoA reductase in the PHB producing
pathway provides a sink for excess reducing equivalents.
This research result demonstrates that MFA may be
useful in disclosing the metabolic regulation mechanism
to some extent [26]. We also made such MFA for other
fermentation systems such as photosynthetic microor-
ganisms [27,28]. ‘

Gulik and Heijinen [29] made 99-dimensional meta-
bolic flux analysis of aerobic growth of S. cerevisiae on
glucose/ethanol mixtures and predicted five different
metabolic flux regimes upon transition from 100% glu-
cose to 100% ethanol. Pramanik and Keasling [30] de-
veloped a stoichiometric model for E. cofi which incor-
porates 153 reversible and 147 irreversible reactions and
289 metabolites from metabolic data bases for the bio-
synthesis of the macromolecular precursors, coenzymes,
and prosthetic groups necessary for synthesis of all cel-
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lular macromolecules. For such a system, the number of
reactions is greater than the number of metabolites.
Because multiple solutions exist, linear optimization
was used to determine the fluxes. Some of the objective
functions that were used included minimization or
maximization of ATP usage, substrate uptake, growth
rate, and product synthesis.

Ta1<1guch1 et al. [31] applied the metabolic pathway
model to estimate the physiological state of the cells,
that is, the growth and production activity, and the flux
distribution of metabolites for lysine fermentation using
Corynebacterium glutamicum from on-line measurable data.

METABOLIC FLUX ANALYSIS WITH 3C
LABELING EXPERIMENTS

The metabolic flux analysis based on the metabolic
flux distributions computed by the above method based
on mass balances for the metabolites with stoichiomet-
ric eqations may be useful to find the metabolic regula-
tion mechanism for performance improvement of fer-
mentation etc. However, the application of the above
method is limited to relatively simple case. In more
complex metabolic network systems, where the system
involves cyclic pathways such as TCA cycle etc. where
intermediates reenter the cyclic pathway, or the large
number of branching points exist or parallel reaction
steps like the various anaplerotic reactions exist in the
metabolic network, a detailed analysis cannot be done
with the above method. Moreover, the forward and
backward directions of reversible reaction steps can
never be resolved with the above method. In such cases,
the application of metabolite balancing either requires
another sets of reactions or forced to be lumped to-
gether [21]. These problems led to the development of
metabolic flux analysis based on carbon labeling ex-
periments.

Consider a simple example as given in Fig. 1. The net-
work consists of an input substrate S with a known
isotopomer distribution, intracellular intermediates A, B
and C, and an output metabolite P. B is assumed to
have one carbon atom, and the other metabolites are
assumed to have two carbons. V) is the system input
flux (and thus measurable), V; is the output flux, and
the remaining fluxes V,, V,, V, V; are intracellular
fluxes. V, and V; keep the metabolite A together but
with different fates of carbon atoms, while V, splits A
into two molecules of B, and V; reunites the atoms. V,
is assumed to take place in both directions, and the
other fluxes are unidirectional (ie., u, =ps =y, =

= (), where v,” is defined as the ith forward flux "While

“ is the /'th backward flux. All v~ and v/ must be
nonnegative. The mass balance for each intracellular
metabolite yields the following equations:

p o p p p

A: Vi+ vy =v2+v3+v4
PP
B: Y4 = V5 3)

p p p c p
C: vo+v3+vs =vo+vg
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A Simple Example

Fig.1. A simple example network. The isotopomer distribu-
tion of the input metabolite S is known. The input flux v, the
mass 1sotopomer distributions of metabolites A (5, m1, mz )
and P (mf, mf, m}), and the multiplet patterns of the second
carbon of A (s&,, d%,) and P (s2,, 42,) are assumed to be
measurable.

Assuming v, to be measured, there are 3 equations
for 6 variables such as v,”, v, v;7, v,7, v;~ and v,”,
which indicates that the system can be determmed if 3
out of 6 variables are known For example, |, 2, g 3 are
known in addition to v,”, then the other vatiables tan

be computed from Eq. (3) as

p p
V6 = v1
p P
V5 =v4

c P p p p
V2 =V2+V3+va— Vi1

In determining v,”, v;7, and v,”, we need another in-
formation obtainable by carbon labeling experiment etc.

The modeling of isotope distributions may be used to
evaluate intracellular fluxes in more detail and to over-
come the shortcomings of the conventional MFA
method. Isotop1c tracer experiments are usuaﬂy con-
ducted using substrate enriched with “C, which is ra-
dicactive, or *C, which is not radioactive and stable
and detectable by NMR and/or GC-MS. For radioactive
isotopes, the specific activity is usually expressed as
radioactivity per mole or per gram, while for stable iso-
tope, the specific activity is usually expressed as the
fractional enrichment of a specific atom within a mole-
cule. The latter approach has been paid much attention
during the past decade.

[t should be noted that for the flux calculation, nei-
ther enzyme activities nor kinetic information on en-
zymes are required. Only the mass balance for the me-
tabolites and carbon atoms are considered, while the
energy balance is not considered. Several assumptions
are made for flux calculation such that
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1) The system of concern must be kept in a well-
defined stationary physiological state during the meas-
urement procedure, since the steady-state mass balance
is applied for flux calculation. This does not, however,
restrict the application to continuous culture but may
be applied to batch and fed-batch culture by assuming
pseudo-steady state.

2) For the metabolic pathway of interest, all relevant
stoichiometric equations must be defined. Moreover,
the fate of all carbon atoms must be defined. Those can
be easily found in the biochemistry textbooks as far as
the main metabolic pathways are considered.

3) No mass effects are assumed to present. Namely,
the labeling state of a molecule does not influence the
rate of its enzymatic conversion. This may be true as
far as the liquid phase reactions are considered. It
should, however, be careful that mass effects have been
observed in certain situations for small molecules like
CO, [32,33] as stated by Wiechert and Graaf [34].

It should also be noted that there is no need to preset
the directionality for any of the fluxes. In general, a
relatively large negative value of standard free energy
may justify the assumption of irreversibility, that is, the
corresponding reaction step may be considered to be
unidirectional, while bi-directional reactions are consid-
ered for the other cases.

Consider the metabolite activity vector (MAV) for
defining the specific activity or fractional enrichment of
a metabolite, where the ith element of MAV contains
the specific enrichment of the /th carbon atom in the
corresponding molecule [35] such as for metabolite A

MAV,=[A(1) A@)]

Then Zupke and Stephanopoulos [35] introduced atom
mapping matrices (AMMs) which define the transfer of
atoms from reactants to products catalyzed by enzyme
for each reaction. The mass balances for carbon atoms
of intracellular metabolites for Fig. 1 can then be ex-
pressed using MAVs and AMMs as

A: v,”[S>AlyS + v, [C>Al,C
= (v,” [A>C]g, + v;7 [A>C]ys +v,7 [A>B]g)A

B: v, (A>BlgA = v,”[B>Cly.B (5)
C: v,” [A>C]pA = v,?[A>C]A + v, 7 [B>C]B
=v,” [C>Pg

Where [S>A];, is the AMM from S to A catalyzed by
E1 and so forth.

The MAVs contain the information of fractional en-
richments at individual carbon atom positions. The
above approach is based on the so-called positional rep-
resentation. From the practical application point of
view using NMR and/or GC-MS, another representa-
tion may be convenient.

As an alternative to MAVs, another vector was intro-
duced by Schmidt et al. [36] paying attention to mole
fractions of metabolite molecules that are labeled in a
specific pattern. This vector is called as the isotopomer
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distribution vector (IDV), and it contains mole frac-
tions of the individual isotopomers. Since a carbon
atom is either labeled or nonlabeled, the labeling pat-
terns of a metabolite can be coded with the sequence of
ones and zeros. Therefore, the IDV of a molecule having
n carbon atoms has 2" elements. Let A have 2 carbon
atoms. Then IDV for A is expressed as

[140) (1) 1,(2) I,(3)]*
(I3(004in) 1(01,) 15 (105) Zy (12:,)]"

3

with D La()=1
i=0

Iy

where the subscript “bin” implies the binary representa-
tion. Note that the first element of IDV corresponds to
unlabeled molecule, while the last element corresponds
to uniformly labeled molecule.

Consider the reaction system as mentioned above in
Eq. (5). The isotopomer distribution of the product
molecules is determined by the isotope distribution of
the reactants and the reaction mechanism, which is
specified by the AMMs of the molecular conversion.
Schmidt er al. [36] introduced isotopomer mapping ma-
trices (IMMs) which can be constructed to sum up all
pairs of reactant isotopomers that produce the respec-
tive product isotopomer in all positions of the product
IDV. There is one IMM defined for each pair of reactant
and product molecules in a biochemical carbon ex-
change reaction. The number of rows in IMMs equals
the number of vector elements of the reactant IDV.

In IMMs, columns are associated with the individual
labeling patterns of the respective substrate molecule,
and the individual rows are associated with the product
isotopomer labeling patterns. The ith column corre-
sponds to the ith substrate IDV element. Hence, the
first column of IMM,,, marks those product iso-
topomers that can evolve from unlabeled A molecules
(00,;.)- The second IMM column marks those that can
evolve from substrate molecules labeled A in the second
position (01,,), and so forth.

Consider the following example: A + B— C
Where

01 0
AMM pyc =[10}, AMMgy =10
Then ) 1
00
01 0
IDV, = 10l IDV, {J
|11
(38(1) 10007 ro17
010 0010 10
011 0010 01
IDV, = 100" IMM gy =1 0100 |, MMy, =|10
101 0100 01
110 0001 10
111 1 0001 | 1 01]
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Using IMMs, one can calculate the isotopomer distribu-
tion of the product molecule C as

IDV,. = (MM, - IDV,)OUMM,, - IDV,) 6)

where operator @: R*R*-R® is defined as the elemen-
twise multiplication of two equally long column vec-
tors.

From the practical application point of view using the
measured data obtained from MS, it may be better to

convert the IDV to mass distribution vector (MDV)[37].

Let MDV, be the MDV of A, and let x,(m), x,(m+1),
x4(m+2), ... be the elements of MDV, and molecular
fraction of a group of isotopomers with same mass.
Then IDV can be converted to MDV by the following
conversion matrix:

Ay

An, 110

[A 1} B {001] “ho )
Ay

m+2

where A;; is the concentration of the ij isotopomer with
ije{0,1}, and A__; is the mass spectrometry signal pro-
duced by the A molecule of molecular weight m+i,
1={1,2}, where m is the molecular weight of the nonla-
beled molecule. In the above equation, A, and A_ are
not shown, since those are obtained using the condition
that the sum of all the sotopomers are unity, and there-
fore, Apand A, are the compliments to 1’s of the sum
of the labeled isotopomers.

Mass spectrometry measurements lead to complex
mass spectra, which are caused by partial fragmentation
of the analyzed compound and isotope distribution.
The isotopomer analysis using GC-MS spectra obtained
by some fragmentation was proposed by Christensen
and Nielsen [38].

Consider next the case of using NMR data. Let A be
constituted of 3 carbon atoms such as alanin as shown
in Fig. 2. Then matrices that map the isotopomer distri-
bution on the relative contribution of singlet, doublet,
doublet of doublet, and triplet signals on the expected
multiplet pattern can be devised from the covalent
structure of the respective molecule. Then matrices that
map the isotopomer distribution on the relative contri-
bution of singlet, doublet, doublet of doublet, and trip-
let signals on the expected multiplet pattern can be de-
vised from the covalent structure of the respective
molecule (see Fig. 2).

(0007
001
00001100 St 010
00100000 | I, =|S., _ |11

01000100 Ses | (8) 100
101

110
111 |

where the 5% and 6™ IDV elements of A contribute to a
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Fig. 2. The isotopomers of a C, molecule and the correspond-
ing C NMR and MS spectra. The first carbon is not consid-
ered for NMR because its 1¥C peak is generally very weak. In
the *C NMR spectrum as observed along «, in 2D 'H-1C
NMR spectroscopy, the centrally located carbon atom give
rise to multiplet signals in form of singlet (S), doublets (D1,
D2), and doublet of doublets (DD), while the peripheral car-
bon atom give only singlet (S) and doublet (D) signals. In the
case of equal coupling constants D1 and D2 cannot be distin-
guished and doublet of doublets become triplets. The MS
spectrum as analyzed by GC-MS separate isotopomers with
different molecular mass.

singlet signal in C1, and so on. Relative contributions of
doublet (D1 and D2) signals and doublet of doublets
DD (including triplets) can be calculated in a similar
manner as

00000000 Dlg,
00010000| I, = | DI, )
00010001 DI,
[00000011] (D2,
00000010| 1, = | D2}, (10)
00000000 | D2,
00000000 DDy )
00000010| I, = | DD, (11)
00000000] DDy,

The relative contributions to the overall carbon signal’
must be scaled to the sum of the individual multiplet
signals. The relative contribution of the singlet signal to
the overall A C2 signal is therefore expressed as

) Sta
Scy + D1y + D2 + DD,

SCZ

(12)

Consider the example in Fig. 1 again to understand the
analysis based on isotopomer representation. The iso-
topomer fractions of a metabolite may be denoted using
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an index notation corresponding to the isotopomer
name. For example, the isotopomer fractions of A are
written as Ay, Ay, Ao, Ay, Where a 1 indicates that the
corresponding carbon atom position is labeled and a 0
indicates that it is not labeled. Then the balance equa-
tions for all the intracellular isotopomers are given as:

pop P o P
Ayt (va+va+va)ag =vaCop + V1 Sy

P P p o P
A (vat+vs+ve)ag =vacy +visy

PP P o P
Ay (va+vs+va)ay =vacy + 1Sy ‘
4 4 P p 13
Bi: 2vsb =vaay +vaag +2vsay (13)

s p P p P
Cor: (vat+ve)g =vaag +vsayg +vs(l—b)b

s p p P p
Cio: (a+tvs)eyg=vaay +vsay +vs(l-b)

s p o P I
Ci: (va+ve)ey =vzay +vsay +vs b

where ay, by, ¢, 5 (1, / = 0, 1) are the isotopomer frac-
tions of meta solites A B, C and S, respectively. The
isotopomer distribution of C is the same as that of out-
put metabolite P. The balances for the pools Ay, B,, C
are not included in Eq. (18), since the sum of all iso-
topomer fractions corresponding to one metabolite is 1.
The balance equations can now be used to represent
all isotopomer distributions in terms of fluxes. From Eq.
(13), we obtain

Aoy +dyg +2ay =2by = cop g + 200 = 5o+ S0 + 2511 (14)

The first and third terms of Eq. (14) represent the sum
of the positional labeling data (f.e. "H-NMR measure-
ments) for the two carbons of metabolites A and C,
respectively. Thus it means that the ®C enrichment of
the first carbon atom is redundant with that of the sec-
ond carbon atom. Consequently, there is no chance to
determine the three free fluxes from positional enrich-
ment data of metabolites A and C. However, the iso-
topomer measurements contain additional information
on the fluxes so that all free fluxes can be determined.
From Eq. (13), it can be obtained that

PP PP PP
o1~ dyp = (viva+viva+viva) - (o1510)/0

PP PP
co1— €10 = (viva—viva) - (sor510)/0 (15)
pp p pp P2 opop
4y = 4(V1V2+V1V3+V1V4)511+(V2V4+V3V4+V4 v1v4) /c

(So1+s10+ 2511)

p P p pp 2
o4 = 4(V1V2+V1V3)Sl1+(\/2\/4+V8V4+V4) (501 + S10+251° /6

h p? o2 P p PP PP PP PP
where 5 = 2vs+\/4+2vzva+vz\14+3vs\/4+vwz—vwa

p P PP p P p p
and ¢ = 4(V4+vzV4+V3V4+V1V2+V1V3)

Combining Egs. (14) and (15), all the isotopomer frac-
tions of A and C can be represented by the free fluxes.
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However, as shown in Fig. 2, the isotopomer measure-
ment techniques do not enable isotopomer fractions to
be measured directly. Instead, they yield linear combi-
nations of such fractions. In this example, the mass iso-
topomer d1str1but1ons of metabolites A (5, mi, m3) and
P (mf, m, m5) are measured by using GC-MS, and the
multiplet patterns of the second carbon of A (5c27 &)
and P (s,, d2,) are determined by NMR. The mass
isotopomer distribution (mg, mf, m3) and multiplet pat-
tern (s&,, 45, ) of metabolite C are the same as those of
P, since the isotopomer distributions of both metabo-
lites are identical. Based on the relationship as shown in
Fig. 2, we can express the different measurement data
by isotopomer fractions.

— a
Aoy T dyg =1

— a
Ay =My
o C
Cor T30 =11
C
Gy =5 (16)
Ay a
— 752
ap; +4an
‘ot c
— =32
Cop t¢n

The equations for the measurements g, mg, méy, dc,
are not included in Eq. (16). This is because the meas-
urement data are the relative abundance of different
mass fractions or multiplet signals, and » measurements
give only #-1 constraints on the isotopomer distribution.
From Eqs. (14)-(16), the functional relationship:

. PP P a a c c .a c (17)
Y (V27V3:V4)_)(m17m27m]:m2:5C215C2>
can be constructed. For example, m{ can be expressed as

a
my = sgp + Sy + 28y —
, (18
PP PP PP e Pt opp
(8(viva+viva+ w \/4)511 + 2(vz Y4+ V3 V4t Va— V1 V4)

(So1 + 810 + 2511) /€

Thus, for the flux estimation, a set of fluxes has to be
found that reproduces all the measured fluxes and iso-
topomer labeling data. This flux determination problem
cannot always be solved explicitly because of the
nonlinear nature of the system. In this situation a
nonlinear least squares fitting approach may be consid-
ered suitable for flux estimation. That is, the intracellu-
lar fluxes are determined such that the deviation be-
tween the measured data and the calculated values is
minimized.

It should be noted that both the forward and back
ward fluxes of bidirectional reactions can be computed
from isotopomer measurements as implied in the above
example. This is one of the advantages over the conven-
tional metabolic flux analysis based on metabolite bal-
ancing, which can estimate only the net fluxes. More-
over, the isotopomer measurements are superior as
compared with positional enrichment measurements,
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since the former contain more information and pose
more constraints on intracellular fluxes.

The above simple example demonstrated that the
isotopomer measurements enabled the fluxes of both
directions to be quantitated. For better description of
the bidirectional reactions, they may be expressed in
terms of their net flux v* and their exchange flux v**
that quantitates the amount of flux common to for-
ward and backward fluxes (see Eq. (19) below). Nonlin-
ear mapping of the exchange fluxes v** to exchange
coefficients v*%! [34,39] as given below in Eq. (20)
may be introduced to overcome the numerical problems
arising from very large parameter values. Here, B is a
constant on the order of magnitude of the net fluxes.

po

v = win(y,v) (19)
exch[0,1] yen
v = B+ Vexch (20)

The strategy of flux determination in a complex
metabolic network is now explained by generalizing the
concepts presented for the simple example. Similar to
the conventional metabolite balancing, balances are
taken around all isotopomers of a particular metabolite.
Then the mathematical framework relating intracellular
fluxes and isotopomer measurements is developed. The
intracellular fluxes can thus be estimated by a nonlinear
least squares fitting procedure. One of the procedures to
solve this problem may be is as follows:

1) The vector of free fluxes (vis, v is given
with an arbitrary value. The linear constraints on the
net fluxes provided by the stoichiometry of metabolic
networks are not usually sufficient for a complete de-
termination of all net fluxes. Therefore, in order to fix
the remaining degrees of freedom, some net fluxes must
be identified that enable the metabolite balance equa-
tions to be solved when values are supplied for them.
These fluxes, together with all the exchange coefficients
that can not be resolved by metabolite balancing, must
be taken as the free fluxes to be optimized.

2) All the net fluxes are determined by using the
stoichiometric equations for key intracellular metabo-
lites and the measured extracellular flux data.

3) The vector (v, v***%1)) is transformed into the
vector (; ;) by using Egs. (19) and (20).

4) The' set of isotopomer balance equations is solved
iteratively via computer to obtain the isotopomer dis-
tribution of each metabolite. In the isotopomer balance
equations, the sum of incoming isotopomer fluxes is set
equal to the sum of isotopomer fluxes out of the pool.
The flux of isotopomer into a metabolite is the sum of
the substrate isotopomers that are required to produce
the individual product isotopomers in biochemical reac-
tions, weighted by the corresponding reaction rate
((v,v) [35,36]. The isotopomer fractions of substrates
should be initialized. Then each of the isotopomer bal-
ance equations is solved sequentially for the isotopomer
distribution vector of products, and the above proce-
dure is repeated until convergence is achieved.

5) The calculated isotopomer distributions are trans-

exch(0, 1])
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formed into multiplet intensities and mass isotopomer
distributions based on the relationship as shown in Fig.
2.

6) Steps 1-5 are incorporated into an optimization
program to find the optimal free fluxes that generate
the estimated isotopomer measurement data and ex-
tracellular fluxes fitted best to the experimental results.
The optimal estimation for free net fluxes and exchange
coefficients is obtained by minimizing the sum of
squares of the deviations between estimated values and
measured data. The objective function to be minimized
may be defined as

F(v) = S (Wi—Ei(V))Z_*_i(Yi_Vk)Z (21)

5, 5,

i=1 j=1 j

where v is the vector of free fluxes to be optimized in
the program, and W, are the M individual isotopomer
measurement data and E; their corresponding estimated
values computed by the assumed values of v. Y is a vec-
tor containing the measured data of N extracellular
fluxes. v, is the element of v, which corresponds to the
extracellular flux measurement Y,. § is the absolute
measurement error[40].

It should be noted that the labeling patterns of the
intracellular metabolites are difficult to measure due to
the small pool sizes of these metabolites. However,
since the amino acids reflect the labeling patterns of a
number of important central metabolites through their
precursors from the central metabolism, and relatively
abundant, the labeling patterns of amino acids have
been used for elucidation of labeling patterns in the
central metabolism [41]. Thus ®C-NMR and GC-MS
have been employed to identify indirectly the labeling
patterns of the intracellular metabolites. In the isotope
labeling experiments, the mixture of 90% of unlabeled
or naturally labeled carbon source such as %lucose and
10% of uniformly labeled carbon source [U-*C] and/or
the first carbon labeled carbon source [1-'*C] is often
employed, but it should be noted that there are many
other possible combinations, and this will affect the
relaibility of the computed fluxes from the statistical
point of view. In the analysis of carbon labeling pat-
terns of amino acids, it is also necessary to make a cor-
rection for the contribution of labeling arising naturally
labeled species of N, O, *0, *C, H etc. This correc-
tion may be carried out using matrix-based methods as
given by Lee er al. [42,43] and Wittman and Heinzle
[37].

Marx et al. [23] combined the information of 'H-
detected ®C NMR spectroscopy to follow individual
carbons with carbon balances for cultivation of lysine-
producing strain of C. glutamicum. The result shows
that the flux through pentose phosphate pathway is
66.4% (relative to the glucose input flux of 1.49 mmol/g
dry weight h), that the entry into TCA cycle 62.2%,
and the contribution of the succinylase pathway of ly-
sine synthesis 13.7%.

For the systems having cyclic pathways, Klapa et al.
[44] presented a mathematical model to analyze iso-
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topomer distributions of TCA cycle intermediates fol-
lowing the administration of ®C (or C) labled sub-
stances. Such theory provides the basis to analyze *C
NMR spectra and molecular weight distributions of
metabolites. This method was applied to the analysis of
several cases of biological significance [45].

Wiechert and his co-workers develop a model for posi-
tional carbon labeling systems, which was further ex-
tended to general isotopomer labeling systems with
statistical treatment [34,46,47]. Mollney et al. [48] com-
pared the different measurement techniques such as'H
NMR, ¥C NMR and mass spectrometry (MS) as well as
two-dimensional 'H-"C NMR techniques to character-
ize in more detail with respect to the formulation of
measurement equations. Based on these measurement
equations, a statistically optimal flux estimator was
established. Having implemented these tools, different
kinds of labeling experiments were compared using sta-
tistical quality measures.

Although many applications have been reported for
the flux analysis using NMR, GC-MS is also quite use-
ful and has several advantages over NMR such that GC-
MS require relatively small amount of samples as com-
pared with NMR, and GC-MS gives rapid analysis etc.
In GC-MS, the compounds are separated by the gas
chromatography, and the mass spectrometry step ana-
lyzes the labeling patterns of the compounds as they
elute. The mass spectrum of a compound usually con-
tains ions that are produced by fragmentation of the
molecular ion (f.e., the ionized intact molecule). These
fragments contain different subsets of the original car-
bon skelton, and the mass isotopomer distributions of
these fragments contain information that can, in addi-
tion to the information from the molecular ion, be used
for analyzing the labeling pattern of the metabolites
[38]. Christiensen and Nielsen [49] quantified the intra-

cellular fluxes of Penicillium chrisogenum using GC-MS.

They found that glycine was synthesized not only by
serine hydroxymethyltransferase, but also by threonine
aldorase. The formation of cytosolic acetyl-CoA was
also found to be synthesized both via the citrate lyase-
catalysed reaction and by degradation of the penicillin
side-chain precursor, phenoxyacetic acid.

We recently used both 'H-®C 2D NMR and GC-MS
to quantify the flux distributions of cyanobacteria at
different culture conditions such as autotrophic, mixo-
trophic, and heterotrophic conditions, and obtained
some insight into the metabolic regulation with respect
to culture environment [50]. The fractionally *C-
labeled Synechocystis sp. PCC6803 was harvested from
the culture, subjected to hydrolysis, and the labeling
patterns of the amino acids in the hydrolysate were
analyzed using two-dimensional NMR spectroscopy
and GC-MS. For GC-MS, the mass spectrum of a com-
pound can contain ions that are produced by fragmen-
tation of the molecular ion (i.¢., the ionized intact
molecule). The fragment ions contain different subsets
of the original carbon skeleton, thus the mass iso-
topomer distributions of these fragments can provide
additional information to analyze the labeling pattern
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of the metabolite. Since the substrate uptake and the
biomass effluxes were directly measured, the metabolite
balances leave two degrees of freedom for net fluxes. As
the free net fluxes, we have chosen the flux of CO, fixa-
tion in Calvin cycle (r6c™*) and the gluconeogenic flux
of malic enzyme (me™"). The set of free fluxes is com-
pleted by all exchange coefficients of reaction steps that
are assumed to be bidirectional based on thermody-
namic considerations. The estimation of free net fluxes
and exchange coefficients was then performed with the
least squares fitting approach described previously.

The result shows that the flux of CO, reduction
through the Calvin cycle was 211.4% of the glucose
input flux. The reaction mediated by the fructose-1,6-
bisphosphatase was found to be present in Synechocystis
grown mixotrophically, demonstrating the presence of
an ATP-dissipating futile cycle via ATP-consuming
phosphofructokinase and fructose-1,6-bisphosphatase.
The CO, fixation through the phosphoenolpyruvate
carboxylase was 73.4%, which represented about 25%
of the assimilated CO,. The reaction catalyzed by the
malic enzyme was identified by the labeling experi-
ments, and the backward flux from the TCA cycle to
glycolysis was found to be 84.6%. This explains the sig-
nificant increase of C2-C3 carbon bond cleavage in py-
ruvate when compared to -the conservation of C2-C3
connectivity in PEP. High exchange rates in the glucose-
6-phosphate isomerase, ribose-5-phosphate isomerase,
glyceraldehyde-3-phosphate to phosphoenolpyruvate
conversions were found, and the phosphoenolpyruvate
synthase were identified to be inactive during growth
mixotrophically.

The statistical analysis of the estimated intracellular
flux distributions was performed to check the reliability
of the flux estimates and investigate the sensitivity of
the estimated parameter values with respect to the
measurement inaccuracies. A total of 500 data sets were
generated by addition of normally distributed meas-
urement noise to the estimated isotopomer labeling.
The standard deviations in the measurement data were
computed from multiple measurements, from redun-
dant labeling measurements, and from the signal-to-
noise ratio. From these 500 data sets, the same parame-
ter estimation procedure as was used for the estimation
of the best fit flux distribution was applied to estimate
500 flux distributions. From the probability distribution
of the 500 flux distributions, confidence regions for the
individual flux estimates can then be computed.

All free net fluxes were well determined from the
measured data with small confidence regions. On the
other hand, relatively large confidence intervals were
found for the exchange coefficients. This indicates that
the data do not supply the sufficient information for
the quantification of these parameters, since the ex-
change coefficients of these reactions have no or only
an insignificant influence on the value of the objective
function in the error minimization procedure.

In conclusion, it was shown that the combination of
the information available from such isotopomer meas-
urements as GC-MS and two dimensional NMR spec-
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troscopy with the information obtained from metabo-
lite balancing enabled a refined analysis of the meta-
bolic fluxes in a detailed metabolic network.

SYNTHESIS OF METABOLIC PATHWAYS
AND OPTIMIZATION OF METABOLIC
FLUX DISTRIBUTION

The synthesis of metabolic pathways involves the
construction of pathways, i.e., sets of enzyme-catalyzed
bioreactions whose stoichiometry is given, to meet cer-
tain specifications. Systematic synthesis of pathways
that satisfy a set of specifications is relevant in the early
steps of the conception and design of a bioprocess,
where a pathway must be chosen for the production of
the desired product. The first effort for systematic syn-
thesis of metabolic pathways was made by Seressiotis
and Bailey [51]. They presented an approach for syn-
thesizing pathways that start from a given substrate
and produce a target product with calculation of yield
etc.

Mavrovouniotis et al. [52] developed a computer-aided
synthesis method of metabolic pathways, where the
algorithm satisfies each stoichiometric constraint by
recursively transforming a base-set of pathways. They
applied the algorithm to the problem of lysine synthesis
from glucose and ammonia and discovered that the
yield of lysine over glucose cannot exceed 67% in the
absence of enzymatic recovery of carbon dioxide.

Another approach is to find the optimal flux distribu-
tion based on known metabolic network structure and
the objective function such as yield etc. We considered
this problem for PHB production using recombinant E.
coli. The predicted flux distributions obtained by the
application of linear programming indicate that in order
to achieve the maximum PHB yield, about half of the
carbon flow should be metabolized via the pentose-
phosphate (PP) pathway and the flux to TCA cycle
should be shut down. This is easy to understand since
there are two pathways significantly affect the avail-
ability of two substrates for PHB synthesis, NADPH
and acetyl-CoA. The predicted flux from glucose 6-
phosphate to the PP pathway was, however, 46% which
is much higher than the normal value [53]. Based on
our analysis, the metabolic pathway that metabolizes
glucose through part of the PP pathway and the Entner-
Doudoroff (ED) pathway may be the best pathway for
a metabolic variant of E. coli to overproduce PHB [54].
This kind of analysis gives the upper bound for the
yield etc. and may give the motivation on whether fur-
ther effort should be made or not.

MODIFICATION OF METABOLIC
PATHWAYS

Gene-engineering Technique

Consider lactic acid fermentation as an example of
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modifying metabolic pathways by gene-engineering
technique. In lactic acid fermentation, lactic acid pro-
duction increasingly inhibits cellular metabolic activi-
ties. Several processes have, therefore, been developed
to remove the lactic acid in situ. Among them, extrac-
tive fermentation has recently been paid most attention.
The problem with this process, however, is that only
undissociated lactate is extracted. Since in lactic acid
fermentation, the culture pH is generally maintained at
around 6-7, the direct application of extractive fermen-
tation yields very low productivity due to large fraction
of dissociated lactate at such pH values.

We, therefore, considered to modify the metabolism
of Saccharomyces cerevisiae by expressing the lactate de-
hydrogenase (LDH) gene to produce a relevant amount
of lactic acid at low pH. Using this recombinant S. cere-
visige strain, several fermentations were conducted at
several pH values (4.5-3.5). Since the recombinant S.
cerevisige produced a considerable amount of ethanol as
well as lactate (about 10 g/L), we then disrupted several
pyruvate decarboxylase (PDC) genes to suppress the
ethanol formation. Among the PDC genes, PDC1, PDC35,
and PDCé, PDC1 showed the greatest effect on the cell
growth and ethanol production. The plasmid which
contains the LDH-A structure gene was then trans-
formed into the mutant strain lacking the PDC1 gene.
Cultivation of this strain improved the lactate yield
from glucose while suppressing ethanol formation to
some extent [55].

Those results indicate that the metabolic pathway
modification can be made by gene-engineering tech-
nique locally, but it is not an easy task to modify meta-
bolic flux distribution to the desired one.

Control of Culture Environment

Another means of modifying the metabolic flux dis-
tribution is to manipulate the culture environment. We
considered this problem for pyruvate fermentation.
There is an increasing demand for pyruvic acid since it
is an important raw material for the production of
many amino acids such as tryptophan and tyrosine, and
for the synthesis of many drugs and agrochemicals.
Only a small amount of pyruvate is, however, secreted
into the culture broth from wild-type microorganisms.
Some auxotrophic strains, such as thiamine auxotrophs
or lipoic acid auxotrophs have been utilized for pyru-
vate overproduction.

We investigated the metabolism and fermentation
characteristics of Torulopsis glabrata TFO 0005, a vita-
min-auxotrophic pyruvate-producing yeast screened by
Yonehara and Miyata [56]. The strain used is auxotro-
phic for four vitamins such as thiamine hydrochloride,
nicotinic acid (NA), biotin and pyridoxine hydrochlo-
ride. Since dissolved oxygen (DO) is an important envi-
ronmental factor which affects the tricarboxylic acid
(TCA) cycle activity, and thiamin hydrochrolide plays a
key role in the strain [57], attention was focused on
analyzing the effects of these culture conditions on the
cellular metabolism of this strain. Several batch experi-
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ments were conducted at different DO concentrations
and metabolic flux distributions were computed for
each experiment. The point in this research is to control
the specific pathway pinpoint by manipulating culture
environment and by addition of vitamins {58-60].

METABOLIC CONTROL ANALYSIS

The concept of metabolic flux analysis is useful for
quantification of flux distribution, but it does not allow
for evaluation of how the fluxes are controlled. One of
the most important aspects of metabolic engineering
may be control of flux. The main objective is to find
rate-limiting step and bottleneck enzyme. Delgado and
Liao [61] proposed an idea of inverse flux analysis
which allows the prediction of the flux distribution
when some of the manipulable fluxes were perturbed.
The application of this method to E. coli suggested that
the increase in the flux of the anaplerotic pathways,
indicating the reactions catalyzed by phosphoenol py-
ruvate carboxylase and the glyoxylate bypass will de-
crease acetate production while increasing the growth
yield.

The concept of metabolic control analysis (MCA) was
developed by Kacser and Burns [62] and Heinrich and
Rapoport [63]. Several reviews have been made with
some extensions [7,64,65]. In MCA, several kinds of
coefficients play important roles. Elasticity coefficient
(EC) is defined as

g = dv % _dlny
k- dx, v, " dln X (22)
where v, is the i-th reaction rate and x, a k-th variable
that modifies the rate. This coefficient is modulated by
metabolites, which is of practical concern in enzyme
regulation. If parameter p, is used instead of x, , it may
be called as m-elasticity [66] instead of e-elasticity.

Flux control coefficient (FCC) is defined [62] as

o e _din,
Yode, ], dlng

where FCCs express the fractional change in the steady
state flux through the pathway (J, ) that results from
an infinitesimal change in the activity of enzymes (or
reaction rates). It should be noted that whereas the
elasticity coefficients are properties of the individual
enzymes, the FCCs are properties of the system. The
FCCs are, therefore, not fixed but change with the envi-
ronmental conditions [5].

Concentration control coefficient (CCC) is defined as

(23)

_dx, ¢ dlnx

C-k
de; x, dlne

1

(24)

We applied MCA for lysine fermentation. We studied
how FCC changed as fermentation proceeds. It was
found that the bottleneck enzyme changes: asparto-
kinase during lysine formation phase while permease at
the late stage fermentation. We could increase the ly-
sine production rate by increasing those enzyme activi-
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ties by constructing gene-engineered C. glutamucum
[67,68]. Nielsen and Jorgensen [69] have made the simi-
lar analysis for penicillin biosynthesis using Penicillium
chrisogenum.

Although MCA approach has been enthusiastically
employed by many researchers [70], the application to
practical experimental systems is quite limited. Liao and
Delgado [7] pinpointed the gaps still remaining be-
tween mathematical treatment and experimental im-
plementations.

Stephanopoulos and Simpson [71] proposed a means
for calculating group control coefficients as measures of
the control exercised by groups of reactions on the
overall network fluxes and intracellular metabolites
pools. The concepts of this method were illustrated
through the simulation of a case study involving aro-
matic amino-acid biosynthetic pathway. It was further
demonstrated that the optimal strategy for the effective
increase of network fluxes was through the coordinated
amplification of a small number of steps in order to
maintain maximum throughput while ensuring an un-
interrupted supply of intermediate metabolites. Simp-
son et al. [72] also proposed a method of determining
group flux control coetficients based on many experi-
mental data without using mathematical models.

Dynamic extension of metabolic control analysis has
been made with dynamic model for the metabolic
change on the order of minutes [73-75].

MCA is not a modeling framework, but it is a set of
postulates that allows the systematic computation of
network sensitivities to single perturbations in the en-
vironmental or network parameters. Thus its predictive
capability is limited by the quality of the model em-
ployed. Since traditional kinetic models lack the de-
scription of the regulatory component, the sensitivity
coefficients for MCA is suspect. The cybernetic frame-
work developed by Ramkrishna and his co-workers may
offer some advantage over conventional methodologies
[76,77]. The framework hypothesizes that metabolic
systems have evolved optimal goal oriented strategies as
a result of evolutionary processes. The inclusion of a
goal-oriented regulatory strategy gives the cybernetic

. description of a metabolic network, the key feature of

regulatory responsiveness, an element that is missing
from many other contemporary metabolic network
analysis and modeling frameworks.

As stated above, MCA is based on information of the
kinetics of individual reactions. The lack of i# vivo kine-
tic information on the individual pathway reactions are
limiting a widespread use of this concept. To overcome
such a problem, there are yet alternative approaches
based on thermodynamic considerations. The relevant
thermodynamic variable for a thermodynamic feasi-
bility analysis is the Gibb’s free energy of a reaction
(AG). A strict requirement for flow of carbon through
cellular pathways is that AG is negative for all individ-
ual reactions. Mavrovouniotis [78,79] used this concept
in order to develop a procedure that seeks the range of
metabolic concentrations where all the reactions are
feasible (AG < 0). This procedure is based only on the
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knowledge of the value of AGY, the standard Gibbs free
energy and the concentration of cofactors. Pissara and
Nielson [80] applied the thermodynamic feasibility al-
gorithm of Mavrovouniotis [78,79] to the a-aminoa-
dipic acid pathway in P chrysogenum. Thereafter they
considered the penicillin biosynthetic pathway, for
which they calculated the standard Gibbs free energies
using the concept of group contributions [78], and they
used measurements of the pathway metabolite concen-
trations to calculate the AG values for the reactions dur-
ing a fed-batch cultivation.

DESIGN OF METABOLIC REGULATORY
STRUCTURES

It has recently been shown that genetic modification
of metabolic control systems can significantly enhance
the process performance. However, past modifications
of enzyme properties in metabolic system were usually
based on trial and error methods, which becomes inef-
fective when the system becomes large. Since the recent
genetic engineering techniques allow modifications of
both gene-level (expression of genes) and protein-level
(activity of enzymes) regulations, it is desired to de-
velop a useful method for finding the optimal metabolic
structure. However, the optimization techniques for
metabolic system design are not well established now:.
One metabolic optimization method is to maximize the
objective metabolic flux based on the stoichiometric
information of a metabolic system. This approach may
provide the optimal flux distributions for individual
pathways of a metabolic network. However, it does not
suggest the effects of the modification of metabolic
regulatory structure, since no kinetics are considered in
this method. Another conventionally used optimization
method is the utilization of the kinetic model deried by
the S-system formalism [81,82]. This approach does not
also address the effect of the change in regulatory struc-
ture, although the optimum manipulation of external
inputs can be provided [83-85]. The only way to find
the optimal regulatory structures for a metabolic net-
work may be to use the kinetic model obtained from
enzymatic reaction mechanism. Since the mechanism-
based kinetic expressions are usually nonlinear, and
many data are required for the optimization of nonlin-
ear system, a (log)linearized model formulation has
been developed by Hatzimanikatis et al. [86]. This type
of (log)linearized model has been verified to approxi-
mate the original nonlinear model much better than the
general linearized model [87]. By constructing a set of
regulatory structures in which every metabolite is con-
sidered to be capable of regulating any enzyme in the
system, and by considering every possible combination,
the optimization can be carried out effectively for the
nonlinear systems, and the optimal regulatory struc-
tures obtained can give the direction on how genetic
engineering will be applied.

We attempted to find the optimal metabolic regula-
tion structure by applying the mixed integer linear pro-
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gramming method to the log (linearized) model for the
lysine synthetic pathway. The results indicate that
more than 20% increase of internal lysine flux can be
obtained when only the inhibitory regulation was al-
lowed, and eight optimal structures with one regula-
tory loop were adopted. When regulation of enzyme
activation was allowed, internal lysine flux can be in-
creased by more than 70%. Changes of participating
precursor and cofactor concentrations may not improve
lysine flux significantly in this system [88].

IDENTIFICATION OF UNKNOWN
PATHWAYS

Historically, the isotopomer has been used to find the
unknown pathways. However, the method itself is not
systematic. It is expected that the metabolic synthesis
methodology be extended for identifying unknown
pathways.

When propionibacteria are grown under anaerobic
condition, propionate, acetate, and CO, are produced
through the randomizing pathway. Moreover, vitamin
By, is accumulated intracellularly under anaerobic con-
dition. The accumulation of propionate causes strong
inhibition on cell growth as well as vitamin B,, synthe-
sis. In contrast, if cultivation was switched from an-
aerobic to aerobic, the propionate and vitamin By,
ceased to be produced while acetate continued to be
produced. Noting the experimental fact that the propi-
onate accumulated during anaerobic cultivation was
decomposed when the cultivation was shifted to an
aerobic condition, we considered to change the DO
concentration periodically between 0 ppm and 1 ppm
to keep the propionate concentration at low level and
thus to show the improvement of vitamin B,, produc-
tivity [89].

Although the metabolic pathway of propionibacte-
rium grown under anaerobic condition has been well
investigated, its pathway under aerobic condition is not
fully investigated yet. The randomizing pathway may
function in a reversed direction in the presence of oxy-
gen, through which the propionate is oxidized. We ana-
Iyzed this based on *C experiments [90].

FUTURE PERSPECTIVES

Recent rapid progress in molecular biology unveiled
the intricacles and mechanistic details of genetic infor-
mation transfer and determined the structure of DNA
and the nature of the gene code, establishing DNA as
the source of heredity containing the blueprints form
which organisms are built. These scientific revolution-
ary endeavors have rapidly spawned the development
of new technologies and emerging fields of research
based around genome sequencing efforts (i.e., functional
genomics, structural genomics, proteomics and bioin-
fomatics) [91].

Once presented with the sequence of a genome, the
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first step is to identify the location and size of genes
and their open reading frames (ORF’s). DNA sequence
data then need to be translated into functional infor-
mation, both in terms of the biochemical function of
individual genes, as well as their systematic role in the
operation of multigenic functions.

Genomic technologies can be broadly divided into
two groups, namely those that alter gene structure and
deduce information from altered gene function and
those that observe the behavior of intact genes [92].
The former methods involve the random or systematic
alteration of genes across an organism'’s genome to ob-
tain functional information. Current genome-altering
technologies are distinguished by their strategies for
mutagenizing and analyzing cell populations in a ge-
nome-wide manner.

For the latter, several methods have been developed to
efficiently monitor the behavior of thousands of intact
genes. DNA chips are tools that fractionate a heteroge-
neous DNA mixture into unknown components, while
a complementary method, called SAGE (Sérial Analysis
of Gene Expression), has been important for identifying
transcripts not predicted by sequence information alone
[93]. The two commonly available DNA chips are oli-
gonucleatide chips and DNA microarrays. A primary
technical difference between oligonucleotide chips and
DNA microarrays is the size of their DNA targets.
DeRishi et al. [94] showed how the metabolic and ge-
netic control of gene expression could be studied on a
genome scale using DNA microarray technology. The
temporal changes in genetic expression profiles that
occur during the diauxic shift in S. cerevisiae were ob-
served for every known expressed sequence tag in this
genome.

One of the key issues in functional genomics is to re-
late linear sequence information to nonlinear cellular
dynamics. Toward this end, significant scientific effort
and resources are directed at mRNA expression moni-
toring methods and analysis, and at the same time the
field of proteomics (the simultaneous analysis of total
gene expression at the protein level) represents one of
the premiere strategies for understanding the relation-
ship between various expressed genes and gene prod-
ucts [95].

From annotated genomes, we can directly construct
the stoichiometric matrix for the entire metabolic net-
work of an organism, which allows us to determine
metabolic pathways. The genome-specific stoichimetric
matrix can be obtained for any recently sequenced and
annotated genome, and it may be used to synthesize in
silico organisms. With this thinking, Palsson and his co-
workers [91,96] constructed an i silico strain of E. cols
K-12 from annotated sequence data and from biochemi-
cal information. Using this in silico microorganism, one
can study the relation between E. coli metabolic geno-
type and phenotype in the in silico knockout study [96].
At the heart of this persective is the study of the system
as a whole rather than the detailed study of individual
components and their direct interactions.

It should be noted that it is important to understand
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the regulation mechanism of gene and protein expres-
sions as well as metabolic regulation. Recently, we in-
vestigated how culture environments affect those regu-
lations for Symechocystis using RT-PCR and 2-dimen-
sional electrophoresis as well as NMR and GC-MS [97].
We found that many genes are differentially regulated
according to different mechanism, and the regulation of
metabolic fluxes may be exerted at the transcriptional,
post-transcriptional, translational, post-translational,
and metabolic levels. Although at present, the tran-
scriptomics, proteomics, and metabolic flux analysis
allow high-throughput analysis of gene expression pro-
files, each of these techniques has its own advantages
and limitation,, and only their integration may provide
us with a detailed gene expression phenotype at each
level and allow us to tackle the great complexity under-
lying biological processes. _
Finally, it should be stated that a fusion of concepts
from biological and nonbiological disciplines, including
mathematics, computer science, physics, chemistry and
engineering is required to address the theoretical and
experimental challenges facing the field of genomics,
and together promise great breakthroughs in our under-
standing and engineering cellular systems [92].
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