Effects of Hyperosmolar Stimuli on Activation of Human Eosinophilic Leukaemia EoL-1 Cells

고삼투압 자극이 호산구의 활성화에 미치는 영향

  • Kwon, Byoung Chul (Department of Pediatrics, Yonsei University College of Medicine) ;
  • Kim, Eun Soo (Department of Pediatrics, Yonsei University College of Medicine) ;
  • Kim, Kyung Won (Department of Pediatrics, Yonsei University College of Medicine) ;
  • Song, Tae Won (Department of Pediatrics, Yonsei University College of Medicine) ;
  • Sohn, Myung Hyun (Department of Pediatrics, Yonsei University College of Medicine) ;
  • Shin, Myeong Heon (Department of Parasitology,Yonsei University College of Medicine) ;
  • Kim, Kyu-Eam (Department of Pediatrics, Yonsei University College of Medicine)
  • 권병철 (연세대학교 의과대학 소아과학교실) ;
  • 김은수 (연세대학교 의과대학 소아과학교실) ;
  • 김경원 (연세대학교 의과대학 소아과학교실) ;
  • 송태원 (연세대학교 의과대학 소아과학교실) ;
  • 손명현 (연세대학교 의과대학 소아과학교실) ;
  • 신명헌 (연세대학교 의과대학 기생충학교실) ;
  • 김규언 (연세대학교 의과대학 소아과학교실)
  • Received : 2005.03.17
  • Accepted : 2005.05.09
  • Published : 2005.08.15

Abstract

Purpose : Airway dehydration and subsequent hyperosmolarity of periciliary fluid are considered critical events in exercise-induced bronchoconstriction. The aim of this study was to establish if a hyperosmolar challenge could induce activation of eosinophils. Methods : Human eosinophilic leukaemic cell lines, EoL-1 cells were incubated with hyperosmolar solutions for 15 minutes. Activation of EoL-1 cells was monitored by degranulation and superoxide anion production. In addition, we examined surface expression of CD69 and ICAM-1. Results : Hyperosmolar stimuli didn't induce superoxide anion production and degranulation. In addition, EoL-1 cells cultured with hyperosmolar medium at 930 mOsm/kg $H_2O$ resulted in no significant increment in fluorescent intensity of CD69 and ICAM-1 expression compared with results for cells incubated with isomolar medium. Conclusion : We found that hyperosmolar stimuli don't cause activation of EoL-1 cells, but further studies are required to determine the role of eosinophil in the mechanism of exercise-induced asthma.

목 적 : 운동 중 과호흡으로 인해 기도 내에 열과 수분이 손실되어 기도 내의 삼투압이 높아지게 되고, 이로써 여러 세포들이 염증 매개체를 유리함으로써 운동 유발성 천식을 일으킨다고 추정하고 있다. 이에 본 연구에서는 알레르기 염증반응에 중요한 역할을 하는 호산구에 고삼투압으로 자극시킨 후 호산구의 활성화 여부를 알아보고자 하였다. 방 법 : 호산구 세포주인 EoL-1 세포에 각각의 삼투질 농도와 시간에 따른 superoxide anion의 생성을 측정하였고, EoL-1 세포에 15분 동안 고삼투압 자극(930 mOsm/kg $H_2O$)을 준 직후와 이후 등장성 배지에 옮겨 5시간 동안 배양 후 유세포 분석기를 이용하여 호산구 표면의 CD69와 ICAM-1의 발현을 측정하였고, 배양 상층액에서 ECP 농도를 측정하였다. 결 과 : EoL-1 세포에 15분간 고삼투압 자극을 준 직후 측정한 ECP 농도와 CD69 및 ICAM-1의 fluorescent intensity는 등장성 배지에 노출시켰을 경우와 비교하여 차이를 보이지 않았으며, 고삼투압 자극 후 등장성 배지에 5시간 동안 배양하였을 때에도 유의한 차이를 보이지 않았다. Superoxide anion의 생성에 있어서도 다양한 삼투질 농도에 따른 차이를 보이지 않았으며, 시간의 경과에도 차이를 보이지 않았다. 결 론 : 이번 연구에서는 운동 후 발생하는 기관지 수축의 조기 반응과 후기 반응과 관련하여 고삼투압 자극에 의한 호산구의 활성화를 관찰할 수 없었으나, 향후 연구에 있어 운동 유발성 천식과 관련한 호산구의 역할에 대한 많은 실험과 연구가 필요 하리라 사료된다.

Keywords

References

  1. Mahler DA. Exercise-induced asthma. Med Sci Sports Exerc 1993;25:554-61
  2. Anderson SD, Daviskas E. The mechanism of exerciseinduced asthma is.... J Allergy Clin Immunol 2000;106: 453-9 https://doi.org/10.1067/mai.2000.109822
  3. Anderson SD, Argyros GJ, Magnussen H, Holzer K. Provocation by eucapnic voluntary hyperpnoea to identify exercise induced bronchoconstriction. Br J Sports Med 2001; 35:344-7 https://doi.org/10.1136/bjsm.35.5.344
  4. Storms WW. Review of exercise-induced asthma. Med Sci Sports Exerc 2003;35:1464-70 https://doi.org/10.1249/01.MSS.0000084533.75912.B4
  5. Deal EC Jr, McFadden ER Jr, Ingram RH Jr, Strauss RH, Jaeger JJ. Role of respiratory heat exchange in production of exercise-induced asthma. J Appl Physiol 1979;46:467-75
  6. McFadden ER Jr, Nelson JA, Skowronski ME, Lenner KA. Thermally induced asthma and airway drying. Am J Respir Crit Care Med 1999;160:221-6 https://doi.org/10.1164/ajrccm.160.1.9810055
  7. Massie J. Exercise-induced asthma in children. Paediatr Drugs 2002;4:267-78
  8. Sohn MH, Lee YA, Jeong KY, Sim SB, Kim KE, Yong TS, Shin MH. German cockroach extract induces activation of human eosinophils to release cytotoxic inflammatory mediators. Int Arch Allergy Immunol 2004;134:141-9 https://doi.org/10.1159/000078647
  9. Westerhof F, Timens W, van Oosten A, Zuidhof AB, Nauta N, Schuiling M, et al. Inflammatory cell distribution in guinea pig airways and its relationship to airway reactivity. Mediators Inflamm 2001;10:143-54 https://doi.org/10.1080/09629350124877
  10. Walsh GM. Human eosinophils : their accumulation, activation and fate. Br J Haematol 1997;97:701-9 https://doi.org/10.1046/j.1365-2141.1997.00125.x
  11. Anderson SD, Schoeffel RE, Follet R, Perry CP, Daviskas E, Kendall M. Sensitivity to heat and water loss at rest and during exercise in asthmatic patients. Eur J Respir Dis 1982;63:459-71
  12. Freed AN. Models and mechanisms of exercise-induced asthma. Eur Respir J 1995;8:1770-85 https://doi.org/10.1183/09031936.95.08101770
  13. Speelberg B, van den Berg NJ, Oosthoek CH, Verhoeff NP, van den Brink WT. Immediate and late asthmatic responses induced by exercise in patients with reversible airflow limitation. Eur Respir J 1989;2:402-8
  14. Chhabra SK, Ojha UC. Late asthmatic response in exercise- induced asthma. Ann Allergy Asthma Immunol 1998; 80:323-7 https://doi.org/10.1016/S1081-1206(10)62977-8
  15. Crimi E, Balbo A, Milanese M, Miadonna A, Rossi GA, Brusasco V. Airway inflammation and occurrence of delayed bronchoconstriction in exercise-induced asthma. Am Rev Respir Dis 1992;146:507-12 https://doi.org/10.1164/ajrccm/146.2.507
  16. Freed AN, Adkinson NF Jr. Dry air-induced late phase responses in the canine lung periphery. Eur Respir J 1990; 3:434-40
  17. Iikura Y, Inui H, Nagakura T, Lee TH. Factors predisposing to exercise-induced late asthmatic responses. J Allergy Clin Immunol 1985;75:285-9 https://doi.org/10.1016/0091-6749(85)90059-4
  18. Speelberg B, Verhoeff NP, van den Berg NJ, Oosthoek CH, van Herwaarden CL, Bruijnzeel PL. Nedocromil sodium inhibits the early and late asthmatic response to exercise. Eur Respir J 1992;5:430-7
  19. Eggleston PA, Kagey-Sobotka A, Schleimer RP, Lichtenstein LM. Interaction between hyperosmolar and IgE-mediated histamine release from basophils and mast cells. Am Rev Respir Dis 1984;130:86-91
  20. Anderson SD, Daviskas E. The airway microvasculature and exercise induced asthma. Thorax 1992;47:748-52 https://doi.org/10.1136/thx.47.9.748
  21. Findlay SR, Dvorak AM, Kagey-Sobotka A, Lichtenstein LM. Hyperosmolar triggering of histamine release from human basophils. J Clin Invest 1981;67:1604-13 https://doi.org/10.1172/JCI110195
  22. Eggleston PA, Kagey-Sobotka A, Proud D, Adkinson NF Jr, Lichtenstein LM. Disassociation of the release of histamine and arachidonic acid metabolites from osmotically activated basophils and human lung mast cells. Am Rev Respir Dis 1990;141:960-4 https://doi.org/10.1164/ajrccm/141.4_Pt_1.960
  23. Eggleston PA, Kagey-Sobotka A, Lichtenstein LM. A comparison of the osmotic activation of basophils and human lung mast cells. Am Rev Respir Dis 1987;135:1043-8
  24. Hashimoto S, Matsumoto K, Gon Y, Nakayama T, Takeshita I, Horie T. Hyperosmolarity-induced interleukin-8 expression in human bronchial epithelial cells through p38 mitogen-activated protein kinase. Am J Respir Crit Care Med 1999;159:634-40 https://doi.org/10.1164/ajrccm.159.2.9712090
  25. Otani K, Kanazawa H, Fujiwara H, Hirata K, Fujimoto S, Yoshikawa J. Determinants of the severity of exerciseinduced bronchoconstriction in patients with asthma. J Asthma 2004;41:271-8 https://doi.org/10.1081/JAS-120026083
  26. Yoshikawa T, Shoji S, Fujii T, Kanazawa H, Kudoh S, Hirata K, et al. Severity of exercise-induced bronchoconstriction is related to airway eosinophilic inflammation in patients with asthma. Eur Respir J 1998;12:879-84 https://doi.org/10.1183/09031936.98.12040879
  27. Koh YI, Choi S. Blood eosinophil counts for the prediction of the severity of exercise-induced bronchospasm in asthma. Respir Med 2002;96:120-5 https://doi.org/10.1053/rmed.2001.1238
  28. Gauvreau GM, Ronnen GM, Watson RM, O'Byrne PM. Exercise-induced bronchoconstriction does not cause eosinophilic airway inflammation or airway hyperresponsiveness in subjects with asthma. Am J Respir Crit Care Med 2000;162:1302-7 https://doi.org/10.1164/ajrccm.162.4.2001054
  29. Wong CK, Ho CY, Lam CW, Zhang JP, Hjelm NM. Differentiation of a human eosinophilic leukemic cell line, EoL-1 : characterization by the expression of cytokine receptors, adhesion molecules, CD95 and eosinophilic cationic protein(ECP). Immunol Lett 1999;68:317-23 https://doi.org/10.1016/S0165-2478(99)00064-4
  30. Mayumi M. EoL-1, a human eosinophilic cell line. Leuk Lymphoma 1992;7:243-50 https://doi.org/10.3109/10428199209053629
  31. Tang ML, Fiscus LC. Important roles for L-selectin and ICAM-1 in the development of allergic airway inflammation in asthma. Pulm Pharmacol Ther 2001;14:203-10 https://doi.org/10.1006/pupt.2001.0293
  32. Czech W, Krutmann J, Budnik A, Schopf E, Kapp A. Induction of intercellular adhesion molecule 1(ICAM-1) expression in normal human eosinophils by inflammatory cytokines. J Invest Dermatol 1993;100:417-23 https://doi.org/10.1111/1523-1747.ep12472082
  33. Hartnell A, Robinson DS, Kay AB, Wardlaw AJ. CD69 is expressed by human eosinophils activated in vivo in asthma and in vitro by cytokines. Immunology 1993;80:281-6
  34. Matsumoto K, Appiah-Pippim J, Schleimer RP, Bickel CA, Beck LA, Bochner BS. CD44 and CD69 represent different types of cell-surface activation markers for human eosinophils. Am J Respir Cell Mol Biol 1998;18:860-6 https://doi.org/10.1165/ajrcmb.18.6.3159
  35. Julius P, Luttmann W, Knoechel B, Kroegel C, Matthys H, Virchow JC Jr. CD69 surface expression on human lung eosinophils after segmental allergen provocation. Eur Respir J 1999;13:1253-9 https://doi.org/10.1183/09031936.99.13612609