Inhibition of Vascular Endothelial Growth Factor-induced Endothelial Cell Differentiation by Intravenous Immunoglobulin and Methylprednisolone

혈관내막 성장인자에 의해 유도된 내막세포 분화에 대한 정맥용 면역글로불린과 메틸프레드니솔론의 효과

  • Choi, Hyoun Ah (Department of Pediatrics, College of Medicine, The Catholic University of Korea) ;
  • Ha, Kyung Hwa (Department of Pediatrics, College of Medicine, The Catholic University of Korea) ;
  • Yoon, Jong Seo (Department of Pediatrics, College of Medicine, The Catholic University of Korea) ;
  • Lee, Yoon (Department of Pediatrics, College of Medicine, The Catholic University of Korea) ;
  • Lee, Joon Sung (Department of Pediatrics, College of Medicine, The Catholic University of Korea) ;
  • Han, Ji Wwan (Department of Pediatrics, College of Medicine, The Catholic University of Korea)
  • 최현아 (가톨릭대학교 의과대학 소아과학교실) ;
  • 하경화 (가톨릭대학교 의과대학 소아과학교실) ;
  • 윤종서 (가톨릭대학교 의과대학 소아과학교실) ;
  • 이윤 (가톨릭대학교 의과대학 소아과학교실) ;
  • 이준성 (가톨릭대학교 의과대학 소아과학교실) ;
  • 한지환 (가톨릭대학교 의과대학 소아과학교실)
  • Received : 2005.04.07
  • Accepted : 2005.06.03
  • Published : 2005.08.15

Abstract

Purpose : Kawasaki disease is the most common cause of systemic vasculitis in children less than 5 years of age. Recent immunohistochemistry findings suggest that many vascular growth factors play a role in the formation of the coronary artery lesions. Active remodeling of the coronary artery lesions in Kawasaki disease continues in the form of intimal proliferation and neoangiogenesis for several years after the onset of the disease. Intravenous immunoglobulin(IVIG) and corticosteroid have been used in the treatment of Kawasaki disease but the exact mechanism is not clear. We have investigated that IVIG and corticosteroid inhibited vascular endothelial growth factor(VEGF)-induced tube formation of endothelial cells in vitro on Matrigel assay. Methods : Human umbilical vein endothelial cells(HUVECs) were cultured and seeded on Matrigel coated 24 well plates in medium with or without the following agents : VEGF, VEGF plus IVIG, VEGF plus VEGF antibody, VEGF plus methylprednisolone, VEGF, IVIG plus methylprednisolone for 18 hours. The total length of tube structures in each photograph was quantified. Results : IVIG significantly inhibited the proliferation of HUVECs. The inhibitory effect of IVIG was also reversible. In the meantime, VEGF induced the differentiation of HUVECs into capillary like structures on Matrigel, which was inhibited by VEGF antibody in a dose-dependent manner. Interestingly, IVIG and methylprednisolone inhibited VEGF-induced tube formation of HUVECs. IVIG was more effective in inhibition than methylprednisolone alone. Conclusion : We revealed that VEGF induced the differentiation of HUVECs and this effect was inhibited by IVIG and methylprednisolone.

목 적 : 가와사키병은 어린 소아에서 전신성 혈관염을 일으키는 가장 흔한 원인이다. 가와사키병이 발병한 경우 여러 혈관 성장인자들의 분비가 촉진되어 내막층의 증식과 신생 혈관 생성작용이 진행되면서 관상동맥이 재구성된다. 수년간 가와사키병의 치료제로 IVIG와 코르티코스테로이드가 사용되었으나 그 치료기전이 명확히 밝혀진 바는 없다. 이런 IVIG와 코르티코스테로이드가 가와사키병의 관상동맥합병증을 감소시키는데 어떠한 기전으로 작용하는지 알아보고자 본 연구에서는 Matrigel을 이용하여 in vitro에서 VEGF에 의해 유도된 내막세포 분화에 대한 IVIG와 methylprednisolone의 효과를 보고자 하였다. 방 법 : Matrigel을 이용하여 in vitro에서 VEGF에 의해 유도된 내막세포 분화에 대한 IVIG와 methylprednisolone의 효과를 보고자 VEGF, VEGF와 IVIG, VEGF와 VEGF antibody, VEGF와 methylprednisolone, VEGF, IVIG와 methylprednisolone을 각각 넣어주고, HUVECs를 18시간 동안 배양 후 튜브의 총 길이를 측정하였다. 결 과 : 1) IVIG의 농도를 25 mg/mL, 그리고 40 mg/mL로 증량하였을 경우 IVIG를 투여하지 않은 대조군에 비하여 통계학적으로 각각 유의한 세포수(HUVECs) 감소 효과를 관찰할 수 있었으며(P<0.001), 40 mg/mL를 처리한 경우가 25 mg/mL를 처리한 경우보다 세포수 감소 효과가 더 뚜렷하였다(P<0.05). 세포배양 시간에 따른 억제 효과는 25 mg/mL과 40 mg/mL에서 배양 후 24시간과 48시간 모두에서 대조군과 비교하여 통계학적으로 유의한 효과를 보였다(P<0.001). 2) VEGF 20 ng/mL를 처리한 군에 IVIG 40 mg/mL 또는 여러 농도의 methylprednisolone($10^{-12}M$, $10^{-9}M$ or $10^{-6}M$)을 처치해 주었을 때 튜브 형성이 유의하게 억제되었으며(P<0.05), methylprednisolone의 경우 그 억제 정도가 농도에 비례하여 일어났으나 IVIG 투여시 보다는 억제 효과가 약하였다. 한편, IVIG와 methylprednisolone와 병합투여한 경우는 methylprednisolone 농도에 상관없이 모두 튜브 형성을 잘 억제하였으며(P<0.001), IVIG만 단독 투여한 것과 통계적 차이는 없었다. 결 론 : 본 연구에서는 in vitro에서 VEGF가 HUVECs의 분화를 유도하고 분화된 내막세포의 맥관 형성이 IVIG와 methylprednisolone에 의해 저해된다는 것을 보여주었다. 이는 가와사키병의 관상동맥합병증이 생기는 기전 중 VEGF와 내막세포의 분화로 인해 일어나는 관상동맥의 재구성을 IVIG와 methylprednisolone이 억제한다는 것을 시사하며 치료 기전 중 하나로 제시될 수 있다.

Keywords

References

  1. Maeno N, Takei S, Masuda K, Akaike H, Matsuo K, Kitajima I, et al. Increased serum levels of vascular endothelial growth factor in Kawasaki disease. Pediatr Res 1998;44:596-9 https://doi.org/10.1203/00006450-199810000-00021
  2. Rowely AH, Shulman ST, Mask CA, Finn LS, Terai M, Baker SC, et al. Ig A plasma cell infiltration of proximal respiratory tract, pancreas, kidney, and coronary artery in acute Kawasaki disease. J Infect Dis 2000;182:1183-91 https://doi.org/10.1086/315832
  3. Freeman AF, Shulman ST. Recent developments in Kawasaki disease. Curr Opin Infect Dis 2001;14:357-61 https://doi.org/10.1097/00001432-200106000-00017
  4. Suzuki A, Miyagawa-Tomita S, Nakazawa M, Yutani C. Remodeling of coronary artery lesions due to Kawasaki disease : comparison of arteriographic and immunohistochemical findings. Jpn Heart J 2000;41:245-56 https://doi.org/10.1536/jhj.41.245
  5. Suzuki A, Miyagawa-Tomita S, Komatsu K, Nishikawa T, Sakomura Y, Horie T, et al. Active remodeling of the coronary arterial lesions in the late phase of Kawasaki disease : immunohistochemical study. Circulation 2000;101:2935- 41 https://doi.org/10.1161/01.CIR.101.25.2935
  6. Breier G, Albrecht U, Sterrer S, Risau W. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 1992;114:521-32
  7. Dvorak HF, Brown LF, Detmar M, Dvorak AM. Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Pathol 1995;146:1029-39
  8. Leung DW, Cachianes G, Kuang WJ, Goeddel DV, Ferrara N. Vascularendothelial growth factor is a secreted angiogenic mitogen. Science 1989;246:1306-9 https://doi.org/10.1126/science.2479986
  9. Ferrara N, Houck K, Jakeman L, Leung DW. Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 1992;13:18-32
  10. Plate KH, Breier G, Weich HA, Risau W. Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 1992;359:845-8 https://doi.org/10.1038/359845a0
  11. Koch AE, Harlow LA, Haines GK, Amento EP, Unemori EN, Wong WL, et al. Vascular endothelial growth factor. A cytokine modulating endothelial function in rheumatoid arthritis. J Immunol 1994;152:4149-56
  12. Fava RA, Olsen NJ, Spencer-Green G, Yeo KT, Yeo TK, Berse B, et al. Vascular permeability factor/endothelial growth factor(VPF/VEGF) : accumulation and expression in human synovial fluids and rheumatoid synovial tissue. J Exp Med 1994;180:341-6 https://doi.org/10.1084/jem.180.1.341
  13. Nagashima M, Yoshino S, Ishiwata T, Asano G. Role of vascular endothelial growth factor in angiogenesis of rheumatoid arthritis. J Rheumatol 1995;22:1624-30
  14. Tilton RG, Kawamura T, Chang KC, Ido Y, Bjercke RJ, Stephan CC, et al. Vascular dysfunction induced by elevated glucose levels in rats is mediated by vascular endothelial growth factor. J Clin Invest 1997;99:2192-202 https://doi.org/10.1172/JCI119392
  15. Li J, Brown LF, Hibberd MG, Grossman JD, Morgan JP, Simons M. VEGF, flk-1, and flt-1 expression in a rat myocardial infarction model of angiogenesis. Am J Physiol 1996;270:H1803-11
  16. Hashimoto E, Ogita T, Nakaoka T, Matsuoka R, Takao A, Kira Y. Rapidinduction of vascular endothelial growth factor expression by transient ischemia in rat heart. Am J Physiol 1994;267:H1948-54
  17. Terai M, Honda T, Yasukawa K, Higashi K, Hamada H, Kohno Y. Prognostic impact of vascular leakage in acute Kawasaki disease. Circulation 2003;108:325-30 https://doi.org/10.1161/01.CIR.0000079166.93475.5F
  18. Leung DY. Kawasaki disease. Curr Opin Rheumatol 1993; 5:41-50 https://doi.org/10.1097/00002281-199305010-00007
  19. Shinohara M, Sone K, Tomomasa T, Morikawa A. Corticosteroids in the treatment of the acute phase of Kawasaki disease. J Pediatr 1999;135:465-9 https://doi.org/10.1016/S0022-3476(99)70169-1
  20. Dale RC, Saleem MA, Daw S, Dillon MJ. Treatment of severe complicated Kawasaki disease with oral prednisolone and aspirin. J Pediatr 2000;137:723-6 https://doi.org/10.1067/mpd.2000.108444
  21. Ferrara N. Vascular endothelial growth factor. Eur J Cancer 1996;32A:2413-22
  22. Baatout S. Endothelial differentiation using Matrigel(review). Anticancer Res 1997;17:451-5
  23. Folkman J, Langer R, Linhardt RJ, Haudenschild C, Taylor S. Angiogenesis inhibition and tumor regression caused by heparin or a heparin fragment in the presence of cortisone. Science 1983;221:719-25 https://doi.org/10.1126/science.6192498
  24. Savage CO, Cooke SP. The role of endothelium in systemic vasculitis. J Autoimmun 1993;6:237-49 https://doi.org/10.1006/jaut.1993.1021
  25. Klagsbrun M, D'Amore PA. Vascular growth factor and its receptors. Cytokine Growth Factor Rev 1996;7:259-70 https://doi.org/10.1016/S1359-6101(96)00027-5
  26. Segura I, Serrano A, Buitrago GG, Gonzalez MA, Abad JL, Claveria C, et al. Inhibition of programmed cell death impairs in vitro vascular-like structure formation and reduces in vivo angiogenesis. FASEB J 2002;16:833-41. https://doi.org/10.1096/fj.01-0819com
  27. Trautmann A, Akdis M, Schmid-Grendelmeier P, Disch R, Broker EB, Blaser K, et al. Targeting keratinocyte apoptosis in the treatment of atopic dermatitis and allergic contact dermatitis. J Allergy Clin Immunol 2001;108:839-46 https://doi.org/10.1067/mai.2001.118796
  28. Abe Y, Horiuchi A, Miyake M, Kimura S. Anti-cytokine nature of natural human immunoglobulin : one possible mechanism of the clinical effect of intravenous immunoglobilin therapy. Immunol Rev 1994;139:5-19 https://doi.org/10.1111/j.1600-065X.1994.tb00854.x