Separation of Caffeine and Tryptophan Using Molded Macroporous Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) Rods

주조된 매크로 다공성 Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) 막대를 이용한 카페인과 트립토판의 분리

  • Jin, Longmei (Center for Advanced Bioseperation Technology and Department of Chemical Engineering, Inha University) ;
  • Yan, Hongyuan (Center for Advanced Bioseperation Technology and Department of Chemical Engineering, Inha University) ;
  • Row, Kyung Ho (Center for Advanced Bioseperation Technology and Department of Chemical Engineering, Inha University)
  • 김룡매 (인하대학교 화학공학과, 초정밀생물분리기술연구센터) ;
  • 염홍원 (인하대학교 화학공학과, 초정밀생물분리기술연구센터) ;
  • 노경호 (인하대학교 화학공학과, 초정밀생물분리기술연구센터)
  • Received : 2005.06.20
  • Accepted : 2005.09.08
  • Published : 2005.10.31

Abstract

The molded macroporous poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) rods produced by a facile molding process were polymerized in situ within a tubular mold, chromatographic column ($4.6{\times}100mm$) by free radical polymerization. It was complemented by epoxy derivatized monolithic column and chemical modification of the epoxide groups with the sulphuric acid. By variation of the polymerization conditions, such as the ratio of the monomers, the porogen (pore generating material), and the temperature, the pore size could be varied, so the retention time of the samples may be adjusted. For the mixture of caffeine and tryptophan in the prepared monolithic column, the influences of polymerization material compositions to the efficiency, selectivity, and resolution of the monolithic column were investigated.

주조된 매크로 다공성 poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) 막대를 간단한 주형 과정을 거쳐서 실험실 내 튜브모양의 주형인 크로마토그래피 칼럼($4.6{\times}100mm$)을 사용하여 자유 라디칼 중합에 의해 만들었다. 이는 에폭시 그룹이 유도된 일체형 칼럼과 황산을 이용한 에폭시드 그룹의 화학적인 변형과정을 이용하였다. 단량체 및 포로겐(세공을 생성하는 물질)의 비율, 온도 등 중합반응의 조건을 변화시켜서 세공크기를 조절하여 물질의 체류시간에 영향을 미쳤다. 본 연구에서는 주조된 일체형 칼럼을 이용하여 카페인과 트립토판을 분리하였으며, 중합원료조성이 일체형 칼럼의 효율과 선택도 그리고 분리도에 미치는 영향을 고찰하였다.

Keywords

Acknowledgement

Supported by : 인하대학교

References

  1. Svec, F., 'Preparation and HPLC Applications of Rigid Macroporous Organic Polymer Monoliths,' J. Sep. Sci., 27(10), 747-766(2004) https://doi.org/10.1002/jssc.200401721
  2. Unger, K. K., Packings and Stationary Phases in Chromatographic Techniques, M. Dekker, NY, USA(1990)
  3. Svec, F., Tennikova, T. B. and Deyl, Z., 'Monolithic Materials: Preparation, Properties, and Applications,' Elsevier, Amsterdam, 173(2003)
  4. Krajnc, P., Leber, N., Stefanec, D., Kontrec, S. and Podgornik, A., 'Preparation and Characterization of Poly(high internal phase emulsion) Methacrylate Monoliths and Their Application as Separation Media,' J. Chromatogr. A, 1065(1), 69-73(2005) https://doi.org/10.1016/j.chroma.2004.10.051
  5. Ikegami, T. and Tanaka, N., 'Monolithic Columns for High-efficiency HPLC Separations,' Current Opinion in Chemical Biology., 8(1), 1-7(2004) https://doi.org/10.1016/j.cbpa.2003.12.011
  6. Strancar, A., Podgornik, A., Barut, M. and Necina, R., in: R. Freitag (Ed.), Advances in Biochemical Engineering/Biotechnology (Modern Advances Chromatography), vol. 76, Springer, Heidelberg, 49(2002)
  7. Azanova, V. V., Hradil, J., Svec, F., Pelzbauer, Z. and Panarin, E. F., 'Reactive Polymers. 60. Glycidyl Methacrylate-styrene-ethylene Dimethacrylate Terpolymers Modified with Strong-acid Groups,' React. Polym., 12(3), 247-260(1990) https://doi.org/10.1016/0923-1137(90)90075-F
  8. Azanova, V. V., Hradil, J., Sytov, G., Panarin, E. F. and Svec, F., 'Macroporous Membranes: Part 2. 2,3-Epoxypropyl Methacrylate- styrene-ethylene Dimethacrylate Macroporous Membranes Bearing Strong Acid Groups,' React. Polym., 16(1), 1-8(1991) https://doi.org/10.1016/0923-1137(91)90280-2
  9. Hradil, J. and Svec, F., 'Reactive Polymers. 61. Synthesis of Strongly Basic Anion Exchange Mathacrylate Resins,' React. Polym., 13(1), 43-53(1998) https://doi.org/10.1016/0923-1137(90)90039-7
  10. Luo, Q., Zou, H., Xiao, X., Guo, Z., Kong, L. and Mao, X., 'Chromatographic Separation of Proteins on Metal Immobilized Iminodiacetic Acid-bound Molded Monolithic Rods of Macroporous Poly(glycidyl methacrylate-co-ethylene dimethacrylate),' J. Chromatogr. A, 926(2), 255-264(2001) https://doi.org/10.1016/S0021-9673(01)01055-X
  11. Gong, B., Ke, C. and Geng, X., 'Synthesis of Monodisperse Poly (glycidylmethacrylate-co-ethylene dimethacrylate) Beads and Their Application in Separation of Biopolymers,' Chinese J. Chem., 22(3), 283-289(2004) https://doi.org/10.1002/cjoc.20040220315
  12. Calleri, E., Massolini, G., Lubda, D., Temporini, C., Loiodice, F. and Caccialanza, G., 'Evaluation of a Monolithic Epoxy Silica Support for Penicillin G Acylase Immobilization,' J. Chromatogr. A, 1031(1), 93-100(2004) https://doi.org/10.1016/j.chroma.2003.08.076
  13. Wu, N., Dempsey, J., Yehl, P. M., Dovletoglou, A., Ellison, D. and Wyvratt, J., 'Practical Aspects of Fast HPLC Separations for Pharmaceutical Process Development Using Monolithic Columns,' Analytica. Chimica. Acta., 523(2), 149-156(2004) https://doi.org/10.1016/j.aca.2004.07.069
  14. Gritti, F., Piatkowski, W. and Guiochon, G., 'Study of the Mass Transfer Kinetics in a Monolithic Column,' J. Chromatogr. A, 983(1), 51-71(2003) https://doi.org/10.1016/S0021-9673(02)01648-5