The Effect of Fluidized-Bed Variables on Attrition of Solid Particles

유동층 공정변수의 고체입자 마모에 미치는 영향

  • Received : 2004.12.29
  • Accepted : 2005.08.23
  • Published : 2005.10.10

Abstract

This study was conducted to investigate particle attrition characteristics in a gas desulfurization using zinc titanate sorbent in a 0.035 m i.d. by 1.34 m height gas fluidized bed reactor. Gas jetting from the distributor and bubbling in the gas fluidized bed were found to be the main causes of particle attrition. The experiment was carried out under a slow attrition rate condition to compare the performance of the batch reactor to that of a continuous reactor. The attrition index (AI) and corrected attrition index (CAI) were measured at various the gas velocity, temperature, pressure, and bed weight, in the gas fluidized bed, during the dexulfurization process. The AI (5) and CAI (5) decreased as the bed weight increased. Particle destruction occurred when the particles started to experience physical fatigue under specific impacts over several iterations. AI (5) and CAI (5) also increased as relative humidity, gas velocity and pressure increased, and as temperature decreased. Particle attrition was mainly affected by gas jetting from the distributor, and abrasion resulted in smaller particles than fragmentation did.

본 연구는 zinc titanate를 탈황제로 사용하는 유동층 탈황공정에서 고체 입자 마모특성을 고찰하는 것을 목표로 내경 0.035 m, 높이 1.34 m의 기체유동층 실험장치에서 수행되었다. 다공판 분배기에서 고속 분사 제트와 유동층 내부의 기포요동이 입자마모의 주요 원인으로 사료되었다. 탈황제의 마모속도가 작아서 회분식 측정결과가 연속식 유동층에 근사하게 적용될 수 있는 조건에서 수행되었다. 탈황공정에서 주요 변수인 기체유속, 온도, 압력, 층물질량의 변화에 따른 AI(attrition index)와 CAI(corrected attrition index)를 측정하였다. AI(5), CAI(5)는 층 무게가 증가함에 따라 감소하였다. 입자는 일정기간 충격에 의한 피로현상이 있은 후 마모되는 것으로 판단되었다. AI와 CAI는 기체속도, 상대습도, 압력이 증가함에 따라, 온도가 감소함에 따라 증가하였다. 입자마모는 주로 제트에 의하여 일어났으며 절단(fragmentation)보다 마쇄(abrasion)에 의하여 더 많은 미분입자가 발생하였다.

Keywords

References

  1. P. S. Ji, Development of a Hot Gas Clean-up Technology for IGCC, KEPRI report, 941E102252FGl (1994)
  2. S. H. Kang, Y. W. Rhee, Y. Kang, K. H. Han, C. K. Lee, and K. J. Jin, HWAHAK KONGHAK, 35, 642 (1997)
  3. J. E. Na, S. J. Park, Y. H. Wi, C. K. Vi, and T. J. Lee, HWAHAK KONGHAK, 37, 499 (1999)
  4. Y. S. Yun, Technology Demonstration for the Integrated Gasification System and the Development of Related Simulation Technologies, IAE report 2000-N-C002-P-Ol (2002)
  5. S. C. Oh, H. P. Lee, H. T. Kim, J. B. Lee, and K. O. Yoo, HWAHAK KONGHAK, 38, 117 (2000)
  6. C. K. Vi, J. H. Park, S. H. Jo, G. T. Jin, and J. E. Son, HWAHAK KONGHAK 37, 81 (1999)
  7. C. K. Vi, S. H. Jo, J. E. Son, Y. S. Moon, and J. H. Choi, HWAHAK KONGHAK, 39, 251 (2001)
  8. J. Werther and R. Reppenhagan, Attrition in Fluidized Beds and Pneumatic Conveying Lines: Fludiziation Solids Handling and Processing, ed. C. Y. Wen, Siemens Westinghouse Power Corporation, Pittsburgh, Pennsylvania (1999)
  9. J. Werther and W. Xi, Powder Tech., 76, 15 (1993) https://doi.org/10.1016/0032-5910(93)80036-A
  10. D. Merrick and J. Highly, AIChE Symp. Ser., 70, 367 (1974)
  11. C. K. Ryu and J. B. Lee, Standard Test Method for Determination of Attrition of Powdered sorbents by Air Jets, KEPRI report, TM.97GJl7, I1999.431 (1999)
  12. D. Kunii and O. Levenspiel, Fluidization Eng., 2nd Ed., Butterworth-Heinemann, Boston, 106 (1991)