Temperature Optimization and Scale-up for the Production of Methyl Undecenoate from Methyl Ricinoleate by Pyrolysis Process

Methyl Ricinoleate로부터 Methyl Undecenoate를 생산하는 열분해반응에서 온도의 최적화 및 스케일·업

  • Kim, Hyun-Soo (Department of Biological Engineering, Inha University) ;
  • Song, Hyo-Soon (Total, LTD.) ;
  • Kim, Ho-Jung (Digital Appliance Research Laboratory LG Electronics Inc.) ;
  • Kim, Won-Ho (Department of Biological Engineering, Inha University) ;
  • Hur, Byung-Ki (Department of Biological Engineering, Inha University)
  • 김현수 (인하대학교 생물공학과) ;
  • 송효순 ((주) 토탈산업) ;
  • 김호중 (LG전자 디지털 어플라이언스 연구소) ;
  • 김원호 (인하대학교 생물공학과) ;
  • 허병기 (인하대학교 생물공학과)
  • Received : 2005.01.24
  • Accepted : 2005.02.25
  • Published : 2005.06.10

Abstract

Pyrolysis of methyl ricinoleate, from castor oil, was performed to produce methyl undecenoate. Methyl undecenoate has excellent deodorant, bactericidal and fungicidal activity. The object of this study was to find the optimum temperatures to maximize the yield of methyl undecenoate. The optimum temperatures were at $500^{\circ}C$ and $590^{\circ}C$ for preheating and pyrolysis, respectively. The maximum yield was 46% on the basis of injected methyl ricinoleate. The feeding rate of methyl ricinoleate mixture was selected as the scale-up factor. Maintaining the maximium yield, the feeding rate was scaled-up 20 folds, while the reactor was scaled-up 18 times.

피마자유에서 얻어지는 methyl ricinoleate로부터 탈취 및 항균능력이 우수한 methyl undecenoate를 생산하는 열분해반응을 수행하였다. 이때의 수율은 주입한 methyl undecenoate의 생산수율이 가장 높은 최적예열온도와 최적열분해온도는 각각 $500^{\circ}C$$590^{\circ}C$이였으며, 이때의 수율은 주입 methyl ricinoleate 대비 46%이였다. 또한 이 최적온도를 기반으로 하고, methyl undecenoate 수율을 46%로 유지시키는 스케일 업 실험에서 연료주입속도를 스케일 업 인자로 하였을 경우, 부피가 18배 스케일 업된 반응기에서 약 20배 이상으로 연료주입속도를 스케일 업 할 수 있었다.

Keywords

Acknowledgement

Supported by : 인하대학교

References

  1. A. S. Gupta and .J. S. Aggarwal, J. Sci. Ind. Res., 138, 277 (1954)
  2. V. S. Dalavoy and U. R. Nayak, J. Sci. Ind. Res., 40, 520 (1981)
  3. F. C. Naughton, J. Am. Oil Chem. Soc., 51, 65 (1974) https://doi.org/10.1007/BF00000015
  4. J. J. Meketta, Castor Oil Cracking Productions, in Encyclopedia of Chemical Processing and Design, 6, 401, Marcel Dekker, Inc., New York (1978)
  5. G. B. Han, Z. Y. Liu, S. L. Yao, and R. E. Yan, J. Am. Oil Chem. Soc., 73, 1109 (1996) https://doi.org/10.1007/BF02523370
  6. G. Das, R. K. Trivedi, and A. K. Vasishtha, J. Am. Oil Chem. Soc., 66, 938 (1989) https://doi.org/10.1007/BF02682613
  7. D. Swem, Bailey's Industrial Oil and Fat Products, vol. 1., Wiley Interscience, New York, Fourth ed., 454 (1979)
  8. H. B. Hu, K. W. Park, Y. M. Kim, J. S. Hong, W. H. Kim, B. K. Hur, and J. W. Yang, J. Korean Ind. Eng. Chem., 6, 238 (2000)