• Title/Summary/Keyword: methyl ricinoleate

Search Result 3, Processing Time 0.018 seconds

Temperature Optimization and Scale-up for the Production of Methyl Undecenoate from Methyl Ricinoleate by Pyrolysis Process (Methyl Ricinoleate로부터 Methyl Undecenoate를 생산하는 열분해반응에서 온도의 최적화 및 스케일·업)

  • Kim, Hyun-Soo;Song, Hyo-Soon;Kim, Ho-Jung;Kim, Won-Ho;Hur, Byung-Ki
    • Applied Chemistry for Engineering
    • /
    • v.16 no.3
    • /
    • pp.403-407
    • /
    • 2005
  • Pyrolysis of methyl ricinoleate, from castor oil, was performed to produce methyl undecenoate. Methyl undecenoate has excellent deodorant, bactericidal and fungicidal activity. The object of this study was to find the optimum temperatures to maximize the yield of methyl undecenoate. The optimum temperatures were at $500^{\circ}C$ and $590^{\circ}C$ for preheating and pyrolysis, respectively. The maximum yield was 46% on the basis of injected methyl ricinoleate. The feeding rate of methyl ricinoleate mixture was selected as the scale-up factor. Maintaining the maximium yield, the feeding rate was scaled-up 20 folds, while the reactor was scaled-up 18 times.

Enzymatic Methanolysis of Castor Oil for the Synthesis of Methyl Ricinoleate in a Solvent-Free Medium

  • YANG JUNG-SEOK;JEON GYU-JONG;HUR BYUNG-KI;YANG JI-WON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.6
    • /
    • pp.1183-1188
    • /
    • 2005
  • Several lipases of commercial grade were screened to catalyze the methanolysis of castor oil, and an immobilized Candida antarctica (Novozym 435) had the highest activity among the lipases tested. To enhance the yield of methyl ricinoleate, several reaction parameters were optimized. The optimum temperature was $50^{\circ}C$, and the original water content of lipase was sufficient to maintain the activity of lipase, and additional water supplied inhibited the methanolysis of castor oil. Because the lipase was deactivated by methanol, the reaction was tested by three-step addition of 1 molar equivalent of methanol to the oil. However, the oil was not completely converted to its methyl esters. The final reaction mixture using 3 molar equivalents of methanol to the oil consisted of $70\%$ methyl ricinoleate, $18\%$ monoricinoleate, $11\%$ diricinoleate, and trace triricinoleate at the equilibrium state. The yield of methyl ricinoleate was $97\%$ at 6 molar ratio of methanol to the oil with 300g of castor oil and 6g of immobilized Candida antarctica at $50^{\circ}C$ within 24 h.

Changes in Volatile Components and Capsaicin of Oleoresin Red Pepper during Cooking (고추 Oleoresin의 가열조리중 휘발성 성분 및 Capsaicin의 변화)

  • 최옥수;하봉석
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.23 no.2
    • /
    • pp.232-237
    • /
    • 1994
  • Changes of volatile components in modified oleoresin red pepper during cooking at high temperature were investigated. Dried red pepper was milled to 100mesh of size particle and oily compounds were extracted by reduced pressure steam distrillation. The rest part was reextracted and concentrated. The extracts were combined. The same volume of water and 4% of polyglycerol condensed ricinoleate (PGDR) were added to the combined extract, and emulsified to make oleoresin red pepper 119 volatile compounds were separated from the dried red pepper and oleoresin and 35 components were identified in both samples. The major flavor compounds were identified to be 2-methoxy-phenol, 2, 6-bis(1, 1-dimethylethyl)-4-methyl-phenol, 1, 4-dimethylbenzene, thylbenzene, 1, 2-benzenedicarboxylic acid, 2-methoxyl-4-methylphenol, 4-ethyl-2-methoxy-phenol, and 5- methyl-2-furancarboxyaldehyde, and their transferal from raw red pepper to oleresin was low. 93 voltilie compounds were isolated after 3 hours cooking at 100 and 82 volitile compounds were separated after that at $150^{\circ}C$. Degeneration of volatile compounds was peculiarly proportional to the temperature of cooling. Capsaicin was relatively stable during cooking and remaining ratio after cooking at 100 and $150^{\circ}C$ was 84.7% and 73.3%. respectively. Oleoresin from red pepper had a little antioxidation effect at $100^{\circ}C$ cooking, but, antioxidation effect at $150^{\circ}C$ cooking was not shown due to degradation of capsaicin.

  • PDF