Acknowledgement
Supported by : Ministry of Science and Technology
References
- Abdu, U., Brodsky, M., and Schupbach, T. (2002) Activation of a meiotic checkpoint during Drosophila oogenesis regulates the translation of Gurken through Chk2/Mnk. Curr. Biol. 12, 1645-1651 https://doi.org/10.1016/S0960-9822(02)01165-X
- Abraham, R. T. (2001) Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev. 15, 2177-2196 https://doi.org/10.1101/gad.914401
- Andreassen, P. R., Lacroix, F. B., Lohez, O. D., and Margolis, R. L. (2001) Neither p21WAF1 nor 14-3-3sigma prevents G2 progression to mitotic catastrophe in human colon carcinoma cells after DNA damage, but p21WAF1 induces stable G1 arrest in resulting tetraploid cells. Cancer Res. 61, 7660-7668
- Bae, I., Smith, M. L., and Fornace, A. J. Jr. (1995) Induction of p53-, MDM2-, and WAF1/CIP1-like molecules in insect cells by DNA-damaging agents. Exp. Cell. Res. 217, 541-545 https://doi.org/10.1006/excr.1995.1120
- Baker, B. S. and Carpenter, A. T. (1972) Genetic analysis of sex chromosomal meiotic mutants in Drosophilia melanogaster. Genetics 71, 255-286
- Baker, B. S., Carpenter, A. T., and Ripoll, P. (1978) The utilization during mitotic cell division of loci controlling meiotic recombination and disjunction in Drosophila melanogaaster. Genetics 90, 531-578
- Bartek, J. and Lukas, J. (2003) Chk1 and Chk2 kinases in checkpoint control and cancer. Cancer Cell 3, 421-429 https://doi.org/10.1016/S1535-6108(03)00110-7
- Bartek, J., Lukas, C., and Lukas, J. (2004) Checking on DNA damage in S phase. Nat. Rev. Mol. Cell. Biol. 5, 792-804 https://doi.org/10.1038/nrm1493
- Bi, X., Wei, S. C., and Rong, Y. S. (2004) Telomere protection without a telomerase; the role of ATM and Mre11 in Drosophila telomere maintenance. Curr. Biol. 14, 1348-1353 https://doi.org/10.1016/j.cub.2004.06.063
- Borel, F., Lohez, O. D., Lacroix, F. B., and Margolis, R. L. (2002) Multiple centrosomes arise from tetraploidy checkpoint failure and mitotic centrosome clusters in p53 and RB pocket protein-compromised cells. Proc. Natl. Acad. Sci. USA 99, 9819-9824
- Boyd, J. B., Golino, M. D., Nguyen, T. D., and Green, M. M. (1976) Isolation and characterization of X-linked mutants of Drosophila melanogaster which are sensitive to mutagens. Genetics 84, 485-506
- Brodsky, M. H., Sekelsky, J. J., Tsang, G., Hawley, R. S., and Rubin, G. M. (2000a) mus304 encodes a novel DNA damage checkpoint protein required during Drosophila development. Genes Dev. 14, 666-678
- Brodsky, M. H., Nordstrom, W., Tsang, G., Kwan, E., Rubin, G. M., et al. (2000b) Drosophila p53 binds a damage response element at the reaper locus. Cell 101, 103-113 https://doi.org/10.1016/S0092-8674(00)80627-3
- Brodsky, M. H., Weinert, B. T., Tsang, G., Rong, Y. S., McGinnis, N. M., et al. (2004) Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol. Cell. Biol. 24, 1219-1231 https://doi.org/10.1128/MCB.24.3.1219-1231.2004
- Brumbaugh, K. M., Otterness, D. M., Geisen, C., Oliveira, V., Brognard, J., et al. (2004) The mRNA surveillance protein hSMG-1 functions in genotoxic stress response pathways in mammalian cells. Mol. Cell 14, 585-598 https://doi.org/10.1016/j.molcel.2004.05.005
- Callen, E. and Surralles, J. (2004) Telomere dysfunction in genome instability syndromes. Mutat. Res. 567, 85-104 https://doi.org/10.1016/j.mrrev.2004.06.003
- Castedo, M., Perfettini, J. L., Roumier, T., Andreau, K., Medema, R., et al. (2004) Cell death by mitotic catastrophe: a molecular definition. Oncogene 23, 2825-2837 https://doi.org/10.1038/sj.onc.1207528
- Cenci, G., Rawson, R. B., Belloni, G., Castrillon, D. H., Tudor, M., et al. (1997) UbcD1, a Drosophila ubiquitin-conjugating enzyme required for proper telomere behavior. Genes Dev. 11, 863-875 https://doi.org/10.1101/gad.11.7.863
- Cenci, G., Siriaco, G., Raffa, G. D., Kellum, R., and Gatti, M. (2003) The Drosophila HOAP protein is required for telomere capping. Nat. Cell. Biol. 5, 82-84 https://doi.org/10.1038/ncb902
- Chan, T. A., Hermeking, H., Lengauer, C., Kinzler, K. W., and Vogelstein, B. (1999) 14-3-3Sigma is required to prevent mitotic catastrophe after DNA damage. Nature 401, 616-620 https://doi.org/10.1038/43292
- Chang, H. C. and Rubin, G. M. (1997) 14-3-3 epsilon positively regulates Ras-mediated signaling in Drosophila. Genes Dev. 11, 1132-1139 https://doi.org/10.1101/gad.11.9.1132
- Ciapponi, L., Cenci, G., Ducau, J., Flores, C., Johnson-Schlitz, D., et al. (2004) The Drosophila Mre11/Rad50 complex is required to prevent both telomeric fusion and chromosome breakage. Curr. Biol. 14, 1360-1366 https://doi.org/10.1016/j.cub.2004.07.019
- Davis, T., Meyers, M., Patten, C. W.-V., Sharda, N., Yang, C.-R., et al. (1998) Transcriptional responses to damage created by ionizing radiation. In DNA damage and repair, Nickologg, J. A. and Hoekstra, M. F. (eds.), pp. 223-262, Humana Press Inc., Totowa, New Jersey
- de Nooij, J. C., Letendre, M. A., and Hariharan, I. K. (1996) A cyclin-dependent kinase inhibitor, Dacapo, is necessary for timely exit from the cell cycle during Drosophila embryogenesis. Cell 87, 1237-1247 https://doi.org/10.1016/S0092-8674(00)81819-X
- Donehower, L. A., Harvey, M., Slagle, B. L., McArthur, M. J., Montgomery, C. A. Jr., et al. (1992) Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215-221 https://doi.org/10.1038/356215a0
- Falck, J., Petrini, J. H., Williams, B. R., Lukas, J., and Bartek, J. (2002) The DNA damage-dependent intra-S phase checkpoint is regulated by parallel pathways. Nat. Genet. 30, 290- 294 https://doi.org/10.1038/ng845
- Fanti, L., Giovinazzo, G., Berloco, M., and Pimpinelli, S. (1998) The heterochromatin protein 1 prevents telomere fusions in Drosophila. Mol. Cell 2, 527-538 https://doi.org/10.1016/S1097-2765(00)80152-5
- Foe, V. E., Odell, G. M., and Edgar, B. A. (1993) The Development of Drosophila melanogaster, Cold Spring Harbor Laboratory Press, Cold Springer Harbor, NY
- Fogarty, P., Campbell, S. D., Abu-Shumays, R., Phalle, B. S., Yu, K. R., et al. (1997) The Drosophila grapes gene is related to checkpoint gene chk1/rad27 and is required for late syncytial division fidelity. Curr. Biol. 7, 418-426 https://doi.org/10.1016/S0960-9822(06)00189-8
- Galgoczy, D. J. and Toczyski, D. P. (2001) Checkpoint adaptation precedes spontaneous and damage-induced genomic instability in yeast. Mol. Cell. Biol. 21, 1710-1718 https://doi.org/10.1128/MCB.21.5.1710-1718.2001
- Gerald, J. N., Benjamin, J. M., and Kron, S. J. (2002) Robust G1 checkpoint arrest in budding yeast: dependence on DNA damage signaling and repair. J. Cell Sci. 115, 1749-1757
- Ghabrial, A., Ray, R. P., and Schupbach, T. (1998) okra and spindle-B encode components of the RAD52 DNA repair pathway and affect meiosis and patterning in Drosophila oogenesis. Genes Dev. 12, 2711-2723 https://doi.org/10.1101/gad.12.17.2711
- Gurley, L. R., D'Anna, J. A., Barham, S. S., Deaven, L. L., and Tobey, R. A. (1978) Histone phosphorylation and chromatin structure during mitosis in Chinese hamster cells. Eur. J. Biochem. 84, 1-15 https://doi.org/10.1111/j.1432-1033.1978.tb12135.x
- Hari, K. L., Santerre, A., Sekelsky, J. J., McKim, K. S., Boyd, J. B., et al. (1995) The mei-41 gene of D. melanogaster is a structural and functional homolog of the human ataxia telangiectasia gene. Cell 82, 815-821 https://doi.org/10.1016/0092-8674(95)90478-6
- Haynie, J. L. and Bryant, P. J. (1977) The effects of X-rays on the proliferation dynamics of cells in the imaginal wing disc of Drosophila melanogaster. Wilhelm Roux's Archives 183, 85-100 https://doi.org/10.1007/BF00848779
- Hirao, A., Cheung, A., Duncan, G., Girard, P. M., Elia, A. J., et al. (2002) Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)- dependent and an ATM-independent manner. Mol. Cell. Biol. 22, 6521-6532 https://doi.org/10.1128/MCB.22.18.6521-6532.2002
- Jaklevic, B. R. and Su, T. T. (2004) Relative contribution of DNA repair, cell cycle checkpoints, and cell death to survival after DNA damage in Drosophila larvae. Curr. Biol. 14, 23- 32 https://doi.org/10.1016/j.cub.2003.12.032
- Jassim, O. W., Fink, J. L., and Cagan, R. L. (2003) Dmp53 protects the Drosophila retina during a developmentally regulated DNA damage response. EMBO J. 22, 5622-5632 https://doi.org/10.1093/emboj/cdg543
- Kastan, M. B. and Bartek, J. (2004) Cell-cycle checkpoints and cancer. Nature 432, 316-323 https://doi.org/10.1038/nature03097
- Kockel, L., Vorbruggen, G., Jackle, H., Mlodzik, M., and Bohmann, D. (1997) Requirement for Drosophila 14-3-3 zeta in Raf-dependent photoreceptor development. Genes Dev. 11, 1140-1147 https://doi.org/10.1101/gad.11.9.1140
- Krause, S. A., Loupart, M. L., Vass, S., Schoenfelder, S., Harrison, S., et al. (2001) Loss of cell cycle checkpoint control in Drosophila Rfc4 mutants. Mol. Cell. Biol. 21, 5156-5168 https://doi.org/10.1128/MCB.21.15.5156-5168.2001
- Lanni, J. S. and Jacks, T. (1998) Characterization of the p53- dependent postmitotic checkpoint following spindle disruption. Mol. Cell. Biol. 18, 1055-1064
- Lee, L. A. and Orr-Weaver, T. L. (2003) Regulation of cell cycles in Drosophila development: intrinsic and extrinsic cues. Annu. Rev. Genet. 37, 545-578 https://doi.org/10.1146/annurev.genet.37.110801.143149
- Lee, Y., Lee, J., Bang, S., Hyun, S., Kang, J., et al. (2005) Pyrexia is a new thermal transient receptor potential channel endowing tolerance to high temperatures in Drosophila melanogaster. Nat. Genet. 37, 305-310 https://doi.org/10.1038/ng1513
- Manke, I. A., Nguyen, A., Lim, D., Stewart, M. Q., Elia, A. E., et al. (2005) MAPKAP kinase-2 is a cell cycle checkpoint kinase that regulates the G2/M transition and S phase progression in response to UV irradiation. Mol. Cell 17, 37-48 https://doi.org/10.1016/j.molcel.2004.11.021
- McEachern, M. J., Krauskopf, A., and Blackburn, E. H. (2000) Telomeres and their control. Annu. Rev. Genet. 34, 331-358 https://doi.org/10.1146/annurev.genet.34.1.331
- Mikhailov, A., Cole, R. W., and Rieder, C. L. (2002) DNA damage during mitosis in human cells delays the metaphase/ anaphase transition via the spindle-assembly checkpoint. Curr. Biol. 12, 1797-1806 https://doi.org/10.1016/S0960-9822(02)01226-5
- Neufeld, T. P., de la Cruz, A. F., Johnston, L. A., and Edgar, B. A. (1998) Coordination of growth and cell division in the Drosophila wing. Cell 93, 1183-1193 https://doi.org/10.1016/S0092-8674(00)81462-2
- Nilssen, E. A., Synnes, M., Tvegard, T., Vebo, H., Boye, E., et al. (2004) Germinating fission yeast spores delay in G1 in response to UV irradiation. BMC Cell Biol. 5, 40 https://doi.org/10.1186/1471-2121-5-1
- Nordstrom, W., Chen, P., Steller, H., and Abrams, J. M. (1996) Activation of the reaper gene during ectopic cell killing in Drosophila. Dev. Biol. 180, 213-226 https://doi.org/10.1006/dbio.1996.0296
- Nyberg, K. A., Michelson, R. J., Putnam, C. W., and Weinert, T. A. (2002) Toward maintaining the genome: DNA damage and replication checkpoints. Annu. Rev. Genet. 36, 617-656 https://doi.org/10.1146/annurev.genet.36.060402.113540
- Oikemus, S. R., McGinnis, N., Queiroz-Machado, J., Tukachinsky, H., Takada, S., et al. (2004) Drosophila atm/telomere fusion is required for telomeric localization of HP1 and telomere position effect. Genes Dev. 18, 1850-1861 https://doi.org/10.1101/gad.1202504
- Oishi, I., Sugiyama, S., Otani, H., Yamamura, H., Nishida, Y., et al. (1998) A novel Drosophila nuclear protein serine/threonine kinase expressed in the germline during its establishment. Mech. Dev. 71, 49-63 https://doi.org/10.1016/S0925-4773(97)00200-1
- Ollmann, M., Young, L. M., Di Como, C. J., Karim, F., Belvin, M., et al. (2000) Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101, 91-101 https://doi.org/10.1016/S0092-8674(00)80626-1
- Pagliarini, R. A. and Xu, T. (2003) A genetic screen in Drosophila for metastatic behavior. Science 302, 1227-1231 https://doi.org/10.1126/science.1088474
- Pagliarini, R. A., Quinones, A. T., and Xu, T. (2003) Analyzing the function of tumor suppressor genes using a Drosophila model. Methods Mol. Biol. 223, 349-382
- Pardue, M. L. and DeBaryshe, P. G. (2003) Retrotransposons provide an evolutionarily robust non-telomerase mechanism to maintain telomeres. Annu. Rev. Genet. 37, 485-511 https://doi.org/10.1146/annurev.genet.38.072902.093115
- Paulson, J. R. and Taylor, S. S. (1982) Phosphorylation of histones 1 and 3 and nonhistone high mobility group 14 by an endogenous kinase in HeLa metaphase chromosomes. J. Biol. Chem. 257, 6064-6072
- Pellicioli, A., Lee, S. E., Lucca, C., Foiani, M., and Haber, J. E. (2001) Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol. Cell 7, 293-300 https://doi.org/10.1016/S1097-2765(01)00177-0
- Peters, M., DeLuca, C., Hirao, A., Stambolic, V., Potter, J., et al. (2002) Chk2 regulates irradiation-induced, p53-mediated apoptosis in Drosophila. Proc. Natl. Acad. Sci. USA 99, 11305-11310
- Peterson, C., Carney, G. E., Taylor, B. J., and White, K. (2002) reaper is required for neuroblast apoptosis during Drosophila development. Development 129, 1467-1476
- Queiroz-Machado, J., Perdigao, J., Simoes-Carvalho, P., Herrmann, S., and Sunkel, C. E. (2001) tef: a mutation that causes telomere fusion and severe genome rearrangements in Drosophila melanogaster. Chromosoma 110, 10-23 https://doi.org/10.1007/s004120000116
- Rong, Y. S., Titen, S. W., Xie, H. B., Golic, M. M., Bastiani, M., et al. (2002) Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev. 16, 1568-1581 https://doi.org/10.1101/gad.986602
- Rouse, J. and Jackson, S. P. (2002) Interfaces between the detection, signaling, and repair of DNA damage. Science 297, 547-551 https://doi.org/10.1126/science.1074740
- Royou, A., Macias, H., and Sullivan, W. (2005) The Drosophila Grp/Chk1 DNA damage checkpoint controls entry into anaphase. Curr. Biol. 15, 334-339 https://doi.org/10.1016/j.cub.2005.02.026
- Sancar, A., Lindsey-Boltz, L. A., Unsal-Kacmaz, K., and Linn, S. (2004) Molecular mechanisms of mammalian DNA repair and the DNA damage checkpoints. Annu. Rev. Biochem. 73, 39-85 https://doi.org/10.1146/annurev.biochem.73.011303.073723
- Santocanale, C. and Diffley, J. F. (1998) A Mec1- and Rad53- dependent checkpoint controls late-firing origins of DNA replication. Nature 395, 615-618 https://doi.org/10.1038/27001
- Schmidt-Kastner, P. K., Jardine, K., Cormier, M., and McBurney, M. W. (1998) Absence of p53-dependent cell cycle regulation in pluripotent mouse cell lines. Oncogene 16, 3003-3011 https://doi.org/10.1038/sj.onc.1201835
- Sekelsky, J. J., Brodsky, M. H., and Burtis, K. C. (2000) DNA repair in Drosophila: insights from the Drosophila genome sequence. J. Cell Biol. 150, F31-36 https://doi.org/10.1083/jcb.150.2.F31
- Sellins, K. S. and Cohen, J. J. (1987) Gene induction by gammairradiation leads to DNA fragmentation in lymphocytes. J. Immunol. 139, 3199-3206
- Shechter, D., Costanzo, V., and Gautier, J. (2004) ATR and ATM regulate the timing of DNA replication origin firing. Nat. Cell Biol. 6, 648-655 https://doi.org/10.1038/ncb1145
- Sibon, O. C., Stevenson, V. A., and Theurkauf, W. E. (1997) DNA-replication checkpoint control at the Drosophila midblastula transition. Nature 388, 93-97 https://doi.org/10.1038/40439
- Sibon, O. C., Laurencon, A., Hawley, R., and Theurkauf, W. E. (1999) The Drosophila ATM homologue Mei-41 has an essential checkpoint function at the midblastula transition. Curr. Biol. 9, 302-312 https://doi.org/10.1016/S0960-9822(99)80138-9
- Sibon, O. C., Kelkar, A., Lemstra, W., and Theurkauf, W. E. (2000) DNA-replication/DNA-damage-dependent centrosome inactivation in Drosophila embryos. Nat. Cell. Biol. 2, 90-95 https://doi.org/10.1038/35000041
- Siede, W., Friedberg, A. S., and Friedberg, E. C. (1993) RAD9- dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90, 7985-7989
- Silva, E., Tiong, S., Pedersen, M., Homola, E., Royou, A., et al. (2004) ATM is required for telomere maintenance and chromosome stability during Drosophila development. Curr. Biol. 14, 1341-1347 https://doi.org/10.1016/j.cub.2004.06.056
- Skoufias, D. A., Lacroix, F. B., Andreassen, P. R., Wilson, L., and Margolis, R. L. (2004) Inhibition of DNA decatenation, but not DNA damage, arrests cells at metaphase. Mol. Cell 15, 977-990 https://doi.org/10.1016/j.molcel.2004.08.018
- Skoulakis, E. M. and Davis, R. L. (1996) Olfactory learning deficits in mutants for leonardo, a Drosophila gene encoding a 14-3-3 protein. Neuron 17, 931-944 https://doi.org/10.1016/S0896-6273(00)80224-X
- Skoulakis, E. M. and Davis, R. L. (1998) 14-3-3 proteins in neuronal development and function. Mol. Neurobiol. 16, 269-284 https://doi.org/10.1007/BF02741386
- Smits, V. A., Klompmaker, R., Arnaud, L., Rijksen, G., Nigg, E. A., et al. (2000) Polo-like kinase-1 is a target of the DNA damage checkpoint. Nat. Cell. Biol. 2, 672-676 https://doi.org/10.1038/35023629
- Song, Y. H., Mirey, G., Betson, M., Haber, D. A., and Settleman, J. (2004) The Drosophila ATM ortholog, dATM, mediates the response to ionizing radiation and to spontaneous DNA damage during development. Curr. Biol. 14, 1354-1359 https://doi.org/10.1016/j.cub.2004.06.064
- Starz-Gaiano, M. and Montell, D. J. (2004) Genes that drive invasion and migration in Drosophila. Curr. Opin. Genet. Dev. 14, 86-91 https://doi.org/10.1016/j.gde.2003.12.001
- Su, T. T. and Jaklevic, B. (2001) DNA damage leads to a Cyclin A-dependent delay in metaphase-anaphase transition in the Drosophila gastrula. Curr. Biol. 11, 8-17 https://doi.org/10.1016/S0960-9822(00)00042-7
- Su, T. T., Walker, J., and Stumpff, J. (2000) Activating the DNA damage checkpoint in a developmental context. Curr. Biol. 10, 119-126 https://doi.org/10.1016/S0960-9822(00)00300-6
- Su, T. T., Parry, D. H., Donahoe, B., Chien, C. T., O'Farrell, P. H., et al. (2001) Cell cycle roles for two 14-3-3 proteins during Drosophila development. J. Cell Sci. 114, 3445-3454
- Takada, S., Kelkar, A., and Theurkauf, W. E. (2003) Drosophila checkpoint kinase 2 couples centrosome function and spindle assembly to genomic integrity. Cell 113, 87-99 https://doi.org/10.1016/S0092-8674(03)00202-2
- Takai, H., Naka, K., Okada, Y., Watanabe, M., Harada, N., et al. (2002) Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J. 21, 5195-5205 https://doi.org/10.1093/emboj/cdf506
- Tapon, N., Ito, N., Dickson, B. J., Treisman, J. E., and Hariharan, I. K. (2001) The Drosophila tuberous sclerosis complex gene homologs restrict cell growth and cell proliferation. Cell 105, 345-355 https://doi.org/10.1016/S0092-8674(01)00332-4
- Tapon, N., Harvey, K. F., Bell, D. W., Wahrer, D. C., Schiripo, T. A., et al. (2002) Salvador promotes both cell cycle exit and apoptosis in Drosophila and is mutated in human cancer cell lines. Cell 110, 467-478 https://doi.org/10.1016/S0092-8674(02)00824-3
- Thibault, S. T., Singer, M. A., Miyazaki, W. Y., Milash, B., Dompe, N. A., et al. (2004) A complementary transposon tool kit for Drosophila melanogaster using P and piggyBac. Nat. Genet. 36, 283-287 https://doi.org/10.1038/ng1314
- White, K., Grether, M. E., Abrams, J. M., Young, L., Farrell, K., et al. (1994) Genetic control of programmed cell death in Drosophila. Science 264, 677-683 https://doi.org/10.1126/science.8171319
- White, K., Tahaoglu, E., and Steller, H. (1996) Cell killing by the Drosophila gene reaper. Science 271, 805-807 https://doi.org/10.1126/science.271.5250.805
- Wolff, T. and Ready, D. F. (1993) Pattern formation in the Drosophila retina; in The Development of Drosophila melanogaster, Bate, M. and Arias, A. M. (eds.), pp. 1277-1325, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY
- Xu, J. and Du, W. (2003) Drosophila chk2 plays an important role in a mitotic checkpoint in syncytial embryos. FEBS Lett. 545, 209-212 https://doi.org/10.1016/S0014-5793(03)00536-2
- Xu, T., Wang, W., Zhang, S., Stewart, R. A., and Yu, W. (1995) Identifying tumor suppressors in genetic mosaics: the Drosophila lats gene encodes a putative protein kinase. Development 121, 1053-1063
- Xu, J., Xin, S., and Du, W. (2001) Drosophila Chk2 is required for DNA damage-mediated cell cycle arrest and apoptosis. FEBS Lett. 508, 394-398 https://doi.org/10.1016/S0014-5793(01)03103-9
- Yoo, H. Y., Kumagai, A., Shevchenko, A., and Dunphy, W. G. (2004) Adaptation of a DNA replication checkpoint response depends upon inactivation of Claspin by the Polo-like kinase. Cell 117, 575-588 https://doi.org/10.1016/S0092-8674(04)00417-9
- Zhou, B. B. and Elledge, S. J. (2000) The DNA damage response: putting checkpoints in perspective. Nature 408, 433- 439 https://doi.org/10.1038/35044005
- Zhou, L. and Steller, H. (2003) Distinct pathways mediate UVinduced apoptosis in Drosophila embryos. Dev. Cell 4, 599- 605 https://doi.org/10.1016/S1534-5807(03)00085-6