소아 복부비만 진단을 위한 복부 전산화 단층 촬영의 유용성과 여러 지표와의 상관성 연구

The Usefulness of the Abdominal Computerized Tomography for the Diagnosis of Childhood Obesity and Its Correlation with Various Parameters of Obesity

  • 심윤희 (이화여자대학교 의과대학 소아과학교실) ;
  • 조수진 (이화여자대학교 의과대학 소아과학교실) ;
  • 유정현 (이화여자대학교 의과대학 진단방사선과학교실) ;
  • 홍영미 (이화여자대학교 의과대학 소아과학교실)
  • Shim, Yoon Hee (Department of Pediatrics, College of Medicine, Ewha Womans University) ;
  • Cho, Su Jin (Department of Pediatrics, College of Medicine, Ewha Womans University) ;
  • Rhyu, Jung Hyun (Department of Diagnositic Radiology, College of Medicine, Ewha Womans University) ;
  • Hong, Young Mi (Department of Pediatrics, College of Medicine, Ewha Womans University)
  • 투고 : 2005.03.22
  • 심사 : 2005.05.04
  • 발행 : 2005.10.15

초록

목 적 : 복부 비만은 고혈압, 인슐린 저항, 고인슐린혈증, 당뇨, 고지혈증과 같은 많은 심혈관계 질환의 위험 요인으로 제시되고 있다. 복부 비만을 측정하는 지표로 허리/둔부 비와 허리둘레가 사용되고 있으나, 관상동맥 질환의 예측인자로 복부 비만의 측정학적 cut-off 수치가 소아에서는 아직 제시되지 못하고 있다. 복부 전산화 단층촬영과 초음파를 이용하여 복부 지방을 측정하고, 여러 비만 지표들과의 상관관계를 연구함으로써 복부 비만의 합병증으로 초래되는 심혈관계 질환의 위험인자 평가 방법을 알아 보고자 본 연구를 실시하였다. 방 법 : 비만한 청소년 27명과 나이와 성별이 대등한 정상 체중을 가진 청소년 22명을 대상으로 하여 체질량 지수와 비만 지수, 상완둘레 및 삼각근에서 피부 두께를 비교하였다. 또한, 12시간 공복 상태에서 혈중 지질 및 혈당, 인슐린, 4가지 사이토카인을 측정하고, 인슐린 저항 지수를 구하였으며, 생체 전기저항법을 이용하여 체지방량, 체지방률, 복부지방률을 측정하여 비교하였다. 비만군에서는 복부 초음파로 배꼽부위 피하지방 두께와 복강 내 지방 두께를 측정하고, 복부 전산화 단층 촬영으로 얻은 횡단면 스캔에서 전체 지방 면적을 구하였고, 이 중 피하지방의 면적을 감산하여 복강 내 지방 면적을 구하였다. 결 과 : 소아에서 복부 CT로 측정한 총 지방 면적과 생체 전기 저항법으로 측정한 총지방량과 상관성이 매우 높았다(r=0.954, P<0.05). 복부 CT에서 측정한 복강 내 지방 면적은 상완둘레, 복부비만율, 초음파로 측정한 복부 내 지방 깊이 및 피하 지방량, 체질량 지수, 중성지방 등과 상관성이 높았다. 결 론 : 복부 CT는 복강 내 지방을 측정하는 가장 정확한 방법이지만 임상적으로 유용하지 못하므로, CT와 상관성이 높은 복부 초음파로 대치할 수 있다. 외래나 학교 신체검사에서 사용할 수 있는 선별 검사로는 생체 전기 저항법에 의한 체지방 측정, 상완 둘레, 체질량 지수, 허리/둔부 비 등이 있다. 소아 성인병의 심혈관 위험 예측 지표로는 공복시 leptin, 중성지방, 인슐린 농도 등을 사용할 수 있다.

Purpose : Abdominal obesity is encountered as a risk factor for cardiovascular diseases. However, the anthropometric cut-off value to estimate the cardiovascular risk, has not been suggested. This study was designed to find the relationship between the abdominal fat and various parameters of obesity to find the cardiovascular risk factors related to abdominal obesity and to establish practical methods to measure them. Methods : Twenty seven obese Korean adolescents of moderate to severe degree and 22 healthy adolescents were enrolled. The body mass index(BMI), arm circumference and skinfold thickness were measured. Furthermore, blood lipid, sugar, insulin and four different cytokines' levels were checked and the distribution of body composition was measured by bioelectrical impedance analysis. The subcutaneous and intra-abdominal fat thickness by abdominal ultrasonography(US) and the total and intra-abdominal fat area by abdominal computerized tomography(CT) were measured in the obese group. Results : The most accurate method to measure abdominal fat in children is abdominal CT and the fat mass measured by bioelectrical impedance was strongly correlated with it(r=0.954). It was also correlated with arm circumference, fat thickness measured by abdominal US, BMI, aspartate aminotransferase(AST), alanine aminotransferase(ALT) and triglyceride level. Conclusion : Abdominal CT is the most accurate method to measure intra-abdominal fat, and it can be replaced by abdominal US for cost effectiveness. The screening methods that can be used at school or in outpatient basis include bioelectrical impedance, waist/hip ratio, and arm circumference. The cardiovascular risk factors include leptin, triglyceride and insulin level.

키워드

참고문헌

  1. Lakka HM, Lakka TA, Tuomilehto J, Salonen JT. Abdominal obesity is associated with increased risk of acute coronary events in men. Eur Heart J 2002;23:706-13 https://doi.org/10.1053/euhj.2001.2889
  2. Armellini F, Zamboni M, Rigo L, Todesco T, Bergamo-Andreis IA, Procacci C, et al. The contribution of sonography to the measurement of intra-abdominal fat. J Clin Ultrasound 1990;18:563-7 https://doi.org/10.1002/jcu.1870180707
  3. Armellini F, Zamboni M, Robbi R, Todesco T, Rigo L, Bergamo-Andreis IA, et al. Total and intra-abdominal fat measurements by ultrasound and computerized tomography. Int J Obes Relat Metab Disor 1993;17:209-14
  4. Cucci E, Piatti PM, Orena C, Pontiroli AE, Martino E, Paesano PL, et al. Is echocardiography an adequate method for assessing the thickness of intra-abdominal fat? : a comparison with computed tomography. Radiol Med 1997;94:329-34
  5. Armellini F, Zamboni M, Rigo L, Bergamo-Andreis IA, Robbi R, Marchi M, et al. Sonography detection of small intra-abdominal fat variations. Int J Obesity 1991;15:847-52
  6. Hong YM, Moon KR, Seo JW, Shim JG, Yoo KH, Jeong BJ, et al. Guideline of diagnosis and treatment in childhood obesity. J Korean Pediatr Soc 1999;42:1338-45
  7. Bonora E, Formentini G, Calceterra F, Lombardi S, Marini F, Zenari L, et al. HOMA-estimated insulin resistance is an independent predictor of cardiovascular disease in type 2 diabetic subjects : prospective data from Verona diabetes complications study. Diabetes Care 2002;25:1135-41 https://doi.org/10.2337/diacare.25.7.1135
  8. Wilson DM, Wang Y, Cullen KW, Baranowski T, Himes JH, Gross M, et al. Assessing weight-related biochemical cardiovascular risk factors in African-American girls. Obes Res 2004;12 Suppl:73S-83S https://doi.org/10.1038/oby.2004.271
  9. Weiss R, Dziura J, Burgert TS, Tamborlane WV, Taksali SE, Yeckel CW, et al. Obesity and the metabolic syndrome in children and adolescents. N Engl J Med 2004;350:2362-74 https://doi.org/10.1056/NEJMoa031049
  10. Eckel RH, Krauss RM. American Heart Association call to action : obesity as a major risk factor for coronary heart disease. AHA Nutrition Committee. Circulation 1998;97:2099-100 https://doi.org/10.1161/01.CIR.97.21.2099
  11. Daniels SR. Obesity in the pediatric patient : cardiovascular complications. Prog Pediatr Cardiol 2001;12:161-7 https://doi.org/10.1016/S1058-9813(00)00069-2
  12. Morrison JA, Sprecher DL, Barton BA, Waclawiw MA, Daniels SR. Overweight, fat patterning and cardiovascular disease risk factors in black and white girls : the National Heart, Lung, and Blood Institute Growth and Health Study. J Pediatr 1999;135:458-64 https://doi.org/10.1016/S0022-3476(99)70168-X
  13. Miller J, Rosenbloom A, Silverstein J. Childhood obesity. J Clin Endocrinol Metab 2004;89:4211-8 https://doi.org/10.1210/jc.2004-0284
  14. Steinberger J. Diagnosis of the metabolic syndrome in children. Curr Opin Lipidol 2003;14:555-9 https://doi.org/10.1097/00041433-200312000-00002
  15. Cruz ML, Weigensberg MJ, Huang TT, Ball G, Shaibi GQ, Goran MI. The metabolic syndrome in overweight Hispanic youth and the role of insulin sensitivity. J Clin endocrinol Metab 2004;89:108-13 https://doi.org/10.1210/jc.2003-031188
  16. Sinaiko AR, Donahue RP, Jacobs DR Jr, Prineas RJ. Relation of weight and rate of increase in weight during childhood and adolescence to body size, blood pressure, fasting insulin and lipids in young adults. The Minneapolis Children's Blood Pressure Study. Circulation 1999;23;99:1471-6 https://doi.org/10.1161/01.CIR.99.11.1471
  17. Cook S. The metabolic syndrome : antecedent of adult cardiovascular disease in pediatrics. J Pediatr 2004;145:427-30 https://doi.org/10.1016/j.jpeds.2004.07.021
  18. Freedman DS, Dietz WH, Srinivasan SR, Berenson GS. The relation of overweight to cardiovascular risk factors among children and adolescents : the Bogalusa Heart Study. Pediatrics 1999;103:1175-82 https://doi.org/10.1542/peds.103.6.1175
  19. Faria AN, Ribeiro Filho FF, Gouveia Ferreira SR, Zanella MT. Impact of visceral fat on blood pressure and insulin sensitivity in hypertensive obese women. Obes Res 2002;10:1203-6 https://doi.org/10.1038/oby.2002.164
  20. Hall JE, Zappe D, Kassab S. Mechanism of obesity induced hypertension News Physiol Sci 1994;23:381-94
  21. Steinberger J. Insulin resistance and cardiovascular risk in the pediatric patient. Prog Pediatr Cardiol 2001;12:169-75 https://doi.org/10.1016/S1058-9813(00)00070-9
  22. Fujioka S, Matsuzawa Y, Tokunaga K, Tarui S. Contribution of intra-abdominal fat accumulation to the impairment of glucose and lipid metabolism in human obesity. Metabolism 1987;36:54-7 https://doi.org/10.1016/0026-0495(87)90063-1
  23. Nemet D, Wang P, Funahashi T, Matsuzawa U, Tanaka S, Engelman L, et al. Adipocytokines, body composition, and fitness in children. Pediatr Res 2003;53:148-52 https://doi.org/10.1203/00006450-200301000-00025
  24. Esposito K, Nicoletti G, Giugliano D. Obesity, cytokines and endothelial dysfunction : A link for the raised cardiovascular risk associated with visceral obesity. J Endocrinol Invest 2002;25:646-9
  25. Ribeiro-Filho FF, Faria AN, Azjen S, Zanella MT, Ferreira SR. Methods of estimation of visceral fat : advantages of ultrasonography. Obes Res 2003;11:1488-94 https://doi.org/10.1038/oby.2003.199
  26. Gus M, Fuchs SC, Moreira LB, Moraes RS, Wiehe M, Silva AF, et al. Association between different measurements of obesity and the incidence of hypertension. Am J Hypertens 2004;17:50-3 https://doi.org/10.1016/j.amjhyper.2003.08.010
  27. Rossner S, Bo WJ, Hiltbrandt E, Hinson W, Karstaedt N, Santiago P, et al. Adipose tissue determinations in cadavers: a comparison between cross-sectional planimetry and computed tomography. Int J Obes 1990;14:893-902
  28. Ribeiro-Filho FF, Faria AN, Kohlmann O Jr, Ajzen S, Ribeiro AB, Zanella MT, et al. Ultrasonography for the evaluation of visceral fat and cardiovascular risk. Hypertension 2001;38:713-7 https://doi.org/10.1161/01.HYP.38.3.713