PSA 공정에 의한 이성분 및 삼성분 혼합기체로부터 수소분리

Hydrogen Separation from Binary and Ternary Mixture Gases by Pressure Swing Adsorption

  • 강석현 (한국과학기술연구원 환경공정연구부) ;
  • 정병만 (한국과학기술연구원 환경공정연구부) ;
  • 최현우 (한국과학기술연구원 환경공정연구부) ;
  • 안의섭 (한국과학기술연구원 환경공정연구부) ;
  • 장성철 (한국과학기술연구원 환경공정연구부) ;
  • 김성현 (고려대학교 화공생명공학과) ;
  • 이병권 (한국과학기술연구원 환경공정연구부) ;
  • 최대기 (한국과학기술연구원 환경공정연구부)
  • Kang, Seok-Hyun (Environment & Process Technology Division, Korea Institute of Science and Technology) ;
  • Jeong, Byung-Man (Environment & Process Technology Division, Korea Institute of Science and Technology) ;
  • Choi, Hyun-Woo (Environment & Process Technology Division, Korea Institute of Science and Technology) ;
  • Ahn, Eui-Sub (Environment & Process Technology Division, Korea Institute of Science and Technology) ;
  • Jang, Seong-Cheol (Environment & Process Technology Division, Korea Institute of Science and Technology) ;
  • Kim, Sung-Hyun (Department of Chemical and Biological Engineering, Korea University) ;
  • Lee, Byung-Kwon (Environment & Process Technology Division, Korea Institute of Science and Technology) ;
  • Choi, Dae-Ki (Environment & Process Technology Division, Korea Institute of Science and Technology)
  • 투고 : 2005.10.07
  • 심사 : 2005.11.23
  • 발행 : 2005.12.31

초록

활성탄을 흡착제로 이용한 2bed-6step PSA 공정에서 이성분 혼합기체 $H_2/Ar$(80%/ 20%)와 삼성분 혼합기체 $H_2/Ar/CH_4$(60%/ 20%/ 20%)의 수소 분리를 연구하였다. 비등온-비단열 상태에서 LRC 등온식과 LDF 모델을 고려하여 공정실험과 공정모사를 하였으며, 주기정상상태에 도달할 때까지 탑 내의 농도와 온도변화를 각각 알아보았다. 두 공정 모두에서 수소에 대한 순도 99%와 회수율 75%의 결과를 얻을 수 있었다. 이때, PSA 공정에 미치는 영향으로는 공급유량, 흡착압력 그리고 P/F ratio를 변수로 실험과 전산모사를 수행하여 결과를 비교하였다. 이 결과로부터, 다성분에서 최적의 공정조건을 결정에서 중요한 결정요인과 삼성분에서 최적의 공정조건을 알아보았다.

An experiment and simulation were performed for hydrogen separation of mixtures by PSA (pressure swing adsorption) process on activated carbon. The binary ($H_2/Ar$; 80%/ 20%) and ternary ($H_2/Ar/CH_4$; 60%/ 20%/ 20%) mixtures were used to study the effects of feed composition. The cyclic performances such as purity, recovery, and productivity of 2bed-6step PSA process were experimentally and theoretically compared under non-isothermal and non-adiabatic conditions. The develped process produced the hydrogen with 99% purity and 75% recovery from both processes. Therefore, optimal separation condition was referred multicomponent gas mixtures.

키워드

과제정보

연구 과제 주관 기관 : 에너지관리공단, 한국가스공사

참고문헌

  1. Shin, H. S. and Sub, S. S., 'Performance Analysis of a MultiBed PSA Process to Simulate a Countercurrent Flow of Adsorbent,' HWAHAK KONGHAK, 36(6), 930-936(1998)
  2. Serbezov, A. and Sotirchos, S. V., 'Semianalytical Solution for Multicomponent PSA: Application to PSA Process Design,' Separation and Purification Technology, 31(2), 203-223(2003) https://doi.org/10.1016/S1383-5866(02)00199-5
  3. Skarstrom, C. W., 'Recovery of Hydrogen from Hydrocarbon Gas Streams,' U.S. Patent No. 3,101,261(1963)
  4. Hoke, R c, Marsh, W. D., Jerome, B. and Pramuk, F. S. 'Hydrogen Purification Process,' U.S. Patent No. 3,141,748(1964)
  5. Stark, T. M., 'Gas Separation by Adsorption Process,' U.S. Patent No. 3,252,268(1966)
  6. Batta, L. B., 'Selective Adsorption Process,' U.S. Patent No.3, 564,816(1971)
  7. Jee, J. G, Lee, J. W., Kim, M. B., Cho, C. H. and Lee, C. H., 'Dynamic Characteristics of Adsorption for HiCO and HiCH4 Mixtures in Layer Bed,' HWAHAK KONGHAK, 37(5), 706-712 (1999)
  8. Doong, S. J. and Yang, R T., 'Hydrogen Purification by the Multibed Pressure Swing Adsorption Process,' Reactive Polymers, Ion Exchangers, Sorbents, 6(1), 7-13(1987) https://doi.org/10.1016/0167-6989(87)90202-9
  9. Fuderer, A. and Rudelstorfer, E., 'Selective Adsorption Process,' U.S. Patent No. 3,986,849(1982)
  10. Doong, S. J. and Yang, R. T., 'Bulk Separation of Multicomponent Gas Mixtures by Pressure Swing Adsorption : Pore/Surface Diffusion and Equilibrium ModelS,' AICHE J., 32(3), 397-410(1986) https://doi.org/10.1002/aic.690320306
  11. Jee, J. G, Kim, M. B. and Lee, C. H., 'Pressure Swing Adsorption Processes to Purify Oxygen Using a Carbon Molecular Sieve,' Chemical Engineering Science, 60(3), 869-882(2005) https://doi.org/10.1016/j.ces.2004.09.050
  12. Rege, S. U. and Yang, R T., 'Kinetic Separation of Oxygen and Argon Using Molecular Sieve Carbon,' Adsorption, 6(1), 15-22 (2000) https://doi.org/10.1023/A:1008938930368
  13. Miller, G w., Knaebel, K. S. and Ikels, K. G, 'Equilibria of Nitrogen, Oxygen, Argon, and Air in Molecular Sieve 5A,' AICHE J.,33(2), 194-201(1987) https://doi.org/10.1002/aic.690330204
  14. Yang, R. T., Gas Separation by Adsorption Processes, Butterworth, Boston, MA(1987)
  15. Ruthven, D. M., Farooq, S. and Knaebel, K. S., Pressure Swing Adsorption, VCH publishers, New York(1994)
  16. Yang, J. Y., Han, S. S., Cho, C. H. and Lee, H. J., 'Numerical Simulation of Adsorption Bed and Bed Dynamics for $H_2/CO$ Gas Mixture,' HWAHAK KONGHAK, 33(1), 56-68(1995)
  17. Ruthven, D. M., Principles of Adsorption and Adsorption Processes, John Wiley & Sons, New York(1984)
  18. Chihara, K. and Suzuki, M., 'Simulation ofNonisothermal Pressure Swing Adsorption,' J. Chern. Eng. Jpn., 16(1),53-61(1983) https://doi.org/10.1252/jcej.16.53
  19. Glueckauf, E., 'Theory of Chromatography, Part 10. Formular for Diffusion into Sphere and Their Application to ChromatographY,' Trans. Faraday Soc., 51, 1540-1551(1955) https://doi.org/10.1039/tf9555101540
  20. Malek, A. and Farooq, S. J., 'etermination of Equilibrium Isotherms Using Dynamic Column Breakthrough and Constant Flow Equilibrium Desorption,' Chem. Eng. Data., 41(1), 25-32(1996) https://doi.org/10.1021/je950178e
  21. Aspen Custom Modeler: Modeling Language Reference Guide, Aspen Technology Inc., Cambrige(2003)
  22. Jeong, B. M., Kang, S. H., Choi, H. w., Lee, C. H., Lee, B. K. and Choi, D. K., 'Pure and Binary Mixture Gases Adsorption Equilibria of HydrogenlMethanelEthylene on Activated Carbon,' Korean Chem. Eng. Res., 43(3), 371-379(2005)
  23. Nam, G M., Jeong, B. M., Kang, S. H., Lee, C. H., Lee, B. K. and Choi, D. K., 'Experiment and Simulation of 2-bed PSA for Hydrogen Separation from HiCH4 Gas Mixture,' Korean Chem. Eng. Res., 43(2), 249-258(2005)
  24. Ross, S. and Olivier, J. P., On Physical Adsorption, Wiley, New York(1964)
  25. Yang, J. Y., Han, S. S., Cho, C. H., Lee, C. H. and Lee, H. J., 'Bulk Separation of Hydrogen Mixture by a One-Column PSA Process', Separations Technology, 5(4), 239-249(1995) https://doi.org/10.1016/0956-9618(95)00128-X
  26. Choi, B. U, Hong, S. C., Choi, D. K., Lee, B. G, Beak, Y. S. and Lee, C. H., 'Experimental and Theoretical study of H_2$ Separation Using PSA Process,' Trans. of the Korean Hydrogen Energy Society, 14(1), 81-95(2003)
  27. Yang, J. Y., Han, S. S., Cho, C. H. and Lee, H. J., 'Numerical Simulation of Adsorption Bed and Bed Dynamics for $H_2/CO$ Gas Mixture,' HWAHAK KONGHAK, 33(1), 56-68(1995)
  28. Yang, J. Y., Cho, C. H., Baek, K. H. and Lee, C. H., 'Comparison of One-bed and Two-bed $H_2$ PSA Using Zeolite 5A,' HWAHAK KONGHAK, 35(4),545-551(1997)
  29. Kvamsdal, H. M. and Hertzberg, T., 'Optimization of PSA Systems - Studies on Cyclic Steady State Convergence,' Computers Chem. Engng, 21(8), 819-832(1997) https://doi.org/10.1016/S0098-1354(96)00315-8
  30. Park, J. H., Kim, J. N. and Cho, S. H., 'Performance Analysis of Four-Bed $H_2$ PSA Process Using Layered Beds,' AICHE J., 46(4), 790-802(2000) https://doi.org/10.1002/aic.690460413
  31. Yang, R. T. and Doong, S. J., 'Gas separation by Pressure Swing Adsorption: A Pore-Diffusion Model for Bulk Separation,' AICHE J., 31(11), 1829-1985(1985) https://doi.org/10.1002/aic.690311109