Preparation of Porous Polymer Monoliths in Supercritical Carbon Dioxide

초임계 이산화탄소를 이용한 다공성 고분자 Monolith 제조

  • Kang, Se Ran (Division of Applied Chemical Engineering, Pukyong National University) ;
  • Ju, Chang Sik (Division of Applied Chemical Engineering, Pukyong National University)
  • 강세란 (부경대학교 응용화학공학부) ;
  • 주창식 (부경대학교 응용화학공학부)
  • Received : 2004.09.15
  • Accepted : 2004.11.17
  • Published : 2005.02.28

Abstract

Experimental researches on the preparation of porous polymeric monoliths in supercritical carbon dioxide have been performed and the effects of monomer and polymerization parameters on the physical properties of the monolith prepared were examined. Polymerizations were carried out in the high pressure stainless steel reactor with sapphire window to show the phase change during the polymerization reaction, and continuous and dry porous monolithic polymer could be obtained. The specific surface area of monolithic polymer increased with monomer contents in reaction mixture and reaction pressure. The Rockwell hardness could be enhanced by the addition of co-monomer MMA in reaction mixtures.

초임계 이산화탄소를 이용하여 다공성 고분자 모노리스를 제조하는 실험적 연구를 행하여, 단량체의 종류와 중합반응 조건들이 생성되는 고분자 모노리스의 물성에 미치는 영향을 실험적으로 조사하였다. 중합반응은 반응이 진행되는 동안 반응물의 상변화를 관찰할 수 있도록 사파이어 창을 부착한 고압 반응기 내에서 진행되었으며, 단량체의 농도가 매우 낮은 경우를 제외하고는 반응기 내부형태와 동일한 형상의 건조하고 다공성인 고분자 모노리스를 얻었을 수 있었다. 생성되는 고분자 모노리스의 비 표면적은 반응혼합물 중의 단량체 농도와 중합반응 압력에 따라 증가하였으며, 기계적 강도는 경도 보강제 MMA를 첨가하여 증대시킬 수 있었다.

Keywords

Acknowledgement

Supported by : 부경대학교

References

  1. Kiran, E. and Sengers, J. M. H. L., 'Supercritical Fluids: Fundamentals for Applications,' Kluwer Academic Publishers, London (1994)
  2. McHugh, M. A. and Krukonis, V. J., 'Supercritical Fluid Extraction Priciples and Practice,' 2nd ed., Butterworth-Heinemann(1994)
  3. Lewandowski, K., Murer, P., Svec, F. and Frechet, J. M. J., 'Highly Selective Chiral Recognition on Polymer Supports, Preparation of a Combinatorial Library of Dihydropyrimidines and its Screening for Novel Chiral HPLC Ligands,' Chem. Commun., 18, 2237-2238 (1998)
  4. Xu, M. C., Brahmachary, E., Janco, M., Ling, F. H., Svec, F. and Frechet, J. M. J., 'Preparation Liquid Chromatographic Separation of Enantiomers by Direct Copolymerizations of Monomers with Single or Twin Chiral Ligands,' J. Chromatogr. A, 928, 25-40(2001) https://doi.org/10.1016/S0021-9673(01)01130-X
  5. Xie, S., Svec, F. and Frechet, J. M. J., 'Rigid Porous Polyacry-Lamide-Based Monolithic Columns Containing Butyl Methacrylate as a Separation Medium for the Rapid Hydrophobic Interaction Chromatography of Protein,' J. Chromatogr. A, 775, 65-72(1997) https://doi.org/10.1016/S0021-9673(97)00254-9
  6. Wakayama, H. and Fukushima, Y., 'Porous Platinum Fibers Synthesized using Supercritical Fluid,' Chem. Commun., 391-392(1999)
  7. Matsuyama, H., 'Formation of Porous Flat Membrane by Phase Separation with Supercritical $CO_2$,' J. of Membr. Sci., 194, 157-163(2001) https://doi.org/10.1016/S0376-7388(01)00436-7
  8. Rindfleisch, F., DiNoia, T. P. and McHugh, M. A., 'Solubility of Polymers and Copolymers in Supercritical $CO_2$,' J. Phys. Chem., 100, 15581-15587(1996) https://doi.org/10.1021/jp9615823
  9. O'Neill, M. L., Yates, M. Z., Johnson, K. P., Smith, C. D. and Wilkinson, S. P., 'Dispersion Polymerization in Supercritical $CO_2$ with a Siloxane-Based Macromonomer: 1. The Particle Growth Regime,' Macromolecules, 31, 2838-2847(1998) https://doi.org/10.1021/ma971314i
  10. O'Neill, M. L., Yates, M. Z., Johnson, K. P., Smith, C. D. and Wilkinson, S. P., 'Dispersion Polymerization in Supercritical $CO_2$ with a Siloxane-Based Macromonomer: 2. The Particle Formation Regime,' Macromolecules, 31, 2848-2856(1998) https://doi.org/10.1021/ma971315a
  11. Galia, A., Muratori, A. and Filardo, G., 'Dispersion Copolymerization of Vinyl Monomers in Supercritical Carbon Dioxide,' Ind. Eng. Chem., 42(3), 448-455(2003) https://doi.org/10.1021/ie020382c
  12. Cooper, A. I., Hems, W. P. and Holmes, A. B., 'Synthesis of Highly Cross-Linked Polymers in Supercritical Carbon Dioxide by Heterogeneous Polymerization,' Macromoleclues, 32, 2156-2166(1999) https://doi.org/10.1021/ma981494b
  13. Lele, A. K. and Shine, A. D., 'Morphology of Polymers Precipitated from a Supercritical Solvent,' AIChE, 38(5), 742-752(1992) https://doi.org/10.1002/aic.690380511
  14. Cooper, A. I. and Holmes, A. B., 'Synthesis of Molded Monolithic Porous Polymers using Supercritical Carbon Dioxide as the Porogenic Solvent,' Adv. Mater., 11(15), 1270-1274(1999) https://doi.org/10.1002/(SICI)1521-4095(199910)11:15<1270::AID-ADMA1270>3.0.CO;2-E
  15. Cooper, A. I., Wood, C. D. and Holmes, A. B., 'Synthesis of Well-Defined Macroporous Polymer Monoliths by Sol-Gel Polymerization in Supercritical $CO_2$,' Ind. Eng. Chem., 39, 4741-4744(2000) https://doi.org/10.1021/ie000159k
  16. Chatzidoukas, C., Pladis, P. and Kiparissides, C., 'Mathematical Modeling of Dispersion Polymerization of Methyl Methacrylate in Supercritical Carbon Dioxide,' Ind. Eng. Chem., 42, 743-751 (2003) https://doi.org/10.1021/ie020397a
  17. Wood, C. D. and Cooper, A. I., 'Synthesis of Macroporous Polymer Beads by Suspension Polymerization using Supercritical Carbon Dioxide as a Pressure-Adjustable Porogen,' Macromolecules, 34, 5-8(2001) https://doi.org/10.1021/ma001514l
  18. Tennikov, M. B., Gazdina, N. V., Tennikova, T. B. and Svec, F., 'Effect of Porous Structure of Macroporous Polymer Supports on Resolution in High-Performance Membrane Chromatography of Proteins,' J. Chmatogr A, 798, 55-64(1998) https://doi.org/10.1016/S0021-9673(97)00873-X
  19. Murer, P., Lewandowski, K., Svec, F. and Fréchet, J. M. J., 'Onbead Combinatorial Approach to the Design of Chiral Stationary Phases for HPLC,' Anal. Chem, 71, 1278-1284(1999) https://doi.org/10.1021/ac981143v