Functional Identification of Ginkgo biloba 1-Deoxy-D-xylulose 5-Phosphate Synthase (DXS) Gene by Using Escherichia coli Disruptants Defective in DXS Gene

  • Kim, Sang-Min (Program in Applied Life Chemistry, School of Agricultural Biotechnology, Seoul National University) ;
  • Kuzuyama, Tomohisa (Laboratory of Cell Biotechnology, Biotechnology Research Center, University of Tokyo) ;
  • Chang, Yung-Jin (Program in Applied Life Chemistry, School of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Soo-Un (Program in Applied Life Chemistry, School of Agricultural Biotechnology, Seoul National University)
  • Published : 2005.06.30

Abstract

DXS catalyzes the first step of MEP pathway. Escherichia coli disruptants defective in dxs were constructed by insertional mutation and characterized. Selected disruptant, DXM3, was auxotrophic for DX or ME. Putative class 1 DXS ORF from Ginkgo biloba was shown to rescue DXM3 grown without DX or ME supplementation. The putative ORF was thus confirmed as DXS1. The disruptant was demonstrated to be useful for DSX screening.

Keywords

References

  1. Pure Appl. Chem. v.75 Mevalonate-independent methylerythritol phosphate pathway for isoprenoid biosynthesis. Elucidation and distribution Rhomer, M. https://doi.org/10.1351/pac200375020375
  2. FEBS Lett. v.400 Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via a mevalonate-independent pathway Lichtenthaler, H.K.;Schwender, J.;Disch, A.;Rohmer, M.
  3. Plant J. v.31 Two distantly related genes encoding 1-deoxy-D-xylulose 5-phosphate synthases: differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots Walter, M.H.;Hans, J.;Strack, D.
  4. Proc. Natl. Acad. Sci. USA v.95 Cloning and characterization of a gene from Escherichia coli encoding a transkerolase-like enzyme that catalyzes the synthesis of d-1-deoxyxylulose 5-phosphate, a common precursor for isoprenoid, thiamin, and pyridoxol biosynthesis Lois, L.M.;Campos, N.;Putra, S.R.;Danielsen, K.;Rohmer, M.;Boronat, A. https://doi.org/10.1016/S0040-4039(99)02143-7
  5. Proc. Natl. Acad. Sci. USA v.95 A 1-doexy-D-xylulose 5-phosphate reductoisomerase catalyzing the formation of 2-C-methyl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis Takahashi, S.;Kuzuyama, T.;Watanabe, H.;Seto, H. https://doi.org/10.1016/S0040-4039(00)00295-1
  6. Plant Physiol. Biochem. v.38 1-Deoxy-Dxylulose 5-phosphate synthase from periwincle: cDNA identification and induced gene expression in terpenoid indole alkaloid-producing cells Chahed, K.;Oudin, A.;Guivarc'h, N.;Hamdi, S.;Chenieux, J.C.;Rideau, M.;Clastre, M. https://doi.org/10.1016/S0040-4039(00)00375-0
  7. Tetrahed. Lett. v.41 Formation of 4-(cytidine 5'-diphospho)-2-Cmethyl-D-erythritol from 2-C-methyl-D-erythritol 4-phosphate by 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase, a new enzyme in the nonmevalonate pathway Kuzuyama, T.;Takagi, M.;Kaneda, K.;Dairi, T.;Seto, H.
  8. Plant Physiol. v.117 Dedicated roles of plastid transketolases during the early onset of isoprenoid biogenesis in pepper fruits Bouvier, F.;d'Harlingue, A.;Suire, C.;Backhaus, R.A.;Camara, B.
  9. Tetrahed. Lett. v.41 Studies on the nonmevalonate pathway: conversion of 4-(cytidine 5'-diphospho)-2-C-methyl-Derythritol to its 2-phospho derivative by 4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol kinase Kuzuyama, T.;Takagi, M.;Kaneda, K.;Watanabe, H.;Dairi, T.;Seto, H. https://doi.org/10.1007/BF02703339
  10. J. Bacteriol. v.183 1-Deoxy-D-xylulose 5-phosphate synthase, the gene product of open reading frame (ORF) 2816 and ORF 2895 in Rhodobacter capsulatus Hahn, F.M.;Eubanks, L.M.;Testa, C.A.;Blagg, B.S.J.;Baker, J.A.;Poulter, C.D. https://doi.org/10.2174/1381612043384006
  11. In Vitro Cell. Dev. Biol.-Plant v.38 The mevalonate-independent pathway is expressed in transformed roots of Artemisia annua and regulated by light and culture age Souret, F.F.;Weathers, P.J.;Wobbe, K.K. https://doi.org/10.1016/S0014-5793(96)01404-4
  12. Tetrahed. Lett. v.41 Studies on the nonmevalonate pathway: formation of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate from 2-phospho-4-(cytidine 5'-diphospho)-2-C-methyl-D-erythritol Takagi, M.;Kuzuyama, T.;Kaneda, K.;Watanabe, H.;Dairi, T.;Seto, H. https://doi.org/10.1046/j.1365-313X.2002.01352.x
  13. Gene v.19 Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5 Beck, E.;Ludwig, G.;Auerswald, E.A.;Reiss, B.;Schaller, H. https://doi.org/10.1016/S0981-9428(00)00781-6
  14. Proc. Natl. Acad. Sci. USA v.98 Studies on the nonmevalonate pathway to terpenes: The role of the GcpE(IspG) protein Hecht, S.;Eisenreich, W.;Adam, P.;Amslinger, S.;Kis, K.;Bacher, A.;Arigon, D.;Rohdich, F. https://doi.org/10.1104/pp.117.4.1423
  15. Genetics v.113 Direction of travel of RecBC recombinase through bacteriophage lambda DNA Stahl, F.W.;Kobayashi, J.;ThaJer, D.;Stahl, M.M. https://doi.org/10.1128/JB.183.1.1-11.2001
  16. Molecular cloning: A laboratory manual Sambrook, J.;Fritsch, E.F.;Maniatis, T. https://doi.org/10.1079/IVP2002343
  17. Proc. Natl. Acad. Sci. USA v.99 Biosynthesis of terpenes: Studies on 1-hydroxy-2-methyl-2-(E)-butenyl 4-diphosphate reductase Adam, P.;Hecht, S.;Eisenreich, W.;Kaiser, J.;Grawert, T.;Arigoni, D.;Bacher, A.;Rohdich, F. https://doi.org/10.1016/0378-1119(82)90023-3
  18. Biosci. Biotechnol. Biochem. v.63 Construction and characterization of Escherichia coli disruptants defective in the yaeM Gene Kuzuyama, T.;Takahashhi, S.;Seto, H.
  19. J. Biosci. v.28 An overview of the non-mevalonate pathway for terpenoid biosynthesis in plants Dubey, V.S.;Bhalla, R.;Luthra, R.
  20. Curr. Pharm. Des. v.10 The MEP pathway: a new target for the development of herbicides, antibiotics and antimalarial drug Rodriguez-Concepcion, M. https://doi.org/10.1271/bbb.63.776