DOI QR코드

DOI QR Code

Growth and Physiological Responses of Two Pine Species Grown under Polluted Ansan Industrial Region

안산 공단지역에 식재된 소나무류 2종의 생장과 생리학적 반응

  • Jin, Hyun-O (College of Life Science and Natural Resources, Kyunghee University) ;
  • Choi, Dong-Su (Hokkaido University, Forest, FSC) ;
  • Lee, Choong-Hwa (Department of Forest Environment, Korea Forest Research Institute) ;
  • Jeong, Yong-Ho (Department of Forest Environment, Korea Forest Research Institute) ;
  • Koike, Takayoshi (Hokkaido University, Forest, FSC)
  • 진현오 (경희대학교 생명과학부) ;
  • 최동수 (일본 북해도대학 북방생물권 필드과학센터) ;
  • 이충화 (국립산림과학원 산림환경부) ;
  • 정용호 (국립산림과학원 산림환경부) ;
  • Published : 2005.10.31

Abstract

We investigated the effects of pollutants on two pine species (Pinus koraiensis and Pinus rigida) in an industrial region, using a physiological approach. We measured the growth and physiological parameters (photosynthetic activity and chemical contents) of the pine trees in relation to environmental pollutants. The concentrations of manganese (Mn), fluorine (F) and chlorine (CI) in needles of two pine species at the damaged site were significantly higher than those at the control site, and concentrations of essential elements (P) and chlorophyll in needles at the damaged site were significantly lower than at the control site. The light-saturated net photosynthesis $(P_{sat})$, apparent quantum yield $(\Phi)$, carboxylation efficiency (CE) of both pines at the damaged site were significantly lower than those at the control site. The length of shoots and survivorship of needles of two pines at the damaged site were significantly lower than those at the control site. Especially, at damaged site, growth of shoots and needle longevity of P. koraiensis are larger than those of P. rigida.

안산 공단지대에 식재되어 있는 잣나무와 리기다소나무의 생장 저하의 실태와 그 원인을 구명하기 위하여 생장 및 생리학적 반응을 중심으로 대조구와 비교 고찰하였다. 피해구에 식재 되어 있는 두 수종의 침엽 내 Mn, F 그리고 Cl의 농도는 대조구에 비하여 유의적으로 높았으며, 2년생 3년생으로 갈수록 급격히 그 농도가 증가하였다. 또한 필수 영양 원소인 P와 클로로필 함량은 피해구가 대조구에 비하여 유의적으로 감소하였으며, 또한 침엽의 연령이 증가함에 따라 급격히 감소하였음을 알 수 있었다. 한편, 피해구에 식재되어 있는 두 수종의 최대 광합성률, 양자수율$(\Phi)$, 카르복실레이션효율(CE)등의 광합성 능은 대조구에 비하여 현저히 감소하였다. 이상과 같이 독성 원소의 축적 및 필수 영양 원소의 부족 등 환경 스트레스에 의한 수목 생리활동의 저하가 수목 생장 저하의 직접적인 원인으로 판단된다.

Keywords

References

  1. 농업기술연구소. 1988. 토양화학분석법. 농업기술연구소. 서울. 450p
  2. 이경재, 조우, 한봉호. 1996. 서울 도시생태계 현황과 회복대책(I) - 산림지역 식물군집구조 -. 환경생태학회지 10: 113-127
  3. 이승우, 박관수. 2001. 산림토양의 산성화 민감도에 대한 실험적 평 가(I) - 산중화 반응 예측모형의 활용 -. 한국임학회지 90: 133-138
  4. 이종식, 이규승. 2000. 우리나라 강우의 산성도 중화에 대한 $NH_4^ +$$Ca_2^+$의 영향. 한국환경농학회지 19: 72-74
  5. 이총규, 황진형, 김종갑. 2004a. 산성강우에 의한 수목의 쇠퇴현상 (I) - 음이온을 중심으로 -. 한국생태학회지 24: 347-353
  6. 이충화, 이천용, 변재경, 이승우. 2004b. 대기오염에 의한 산림피해 동태연구. 국립산림과학원 2004년도 연구사업 보고서(산림환경분야, 5-1), 서울. pp. 180-240
  7. 전영신, 조하만, 권원태, 1994. 한반도 중부지방에서 관측된 1992- 1993년 산성비의 특성과 공기 이동 경로 분석. 대기보전학회지 10: 175-182
  8. 정진현, 김춘식, 구교상, 이충화, 원형규, 변재경. 2003. 한국 산림토 양의 모암별 이화학적 특성. 한국임학회지 92: 254-262
  9. 조희두. 1999. 광주지역에서 주요수목의 대기오염물질과 중금속 흡수 정화기능에 관한 연구. 한국임학회지 88: 510-522
  10. 환경부. 2002. 환경통계연감 제15호. 환경부. 서울. pp. 140-203
  11. 환경부.2003. 대기환경월보. 1-12월. 환경부. 서울
  12. Barnes, J.D., L. Balaguer, E. Manrique, S. Elvira and A.W. Davison. 1992. A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ. Exp. Bot. 32: 85-100 https://doi.org/10.1016/0098-8472(92)90034-Y
  13. Burns, R.M. and B.H. Honkala. 1990. Silvics of North America: 1. Conifers. Agriculture Handbook 654. U.S. Department of Agriculture, Forest Service, Washington, DC. Vol. 1. pp. 456-462
  14. Choi, D.S., H.O. Jin, C.H. Lee, Y.C. Kim and M. Kayama. 2005. Effects of soil acidification on the growth of Korean pine(Pinus koraiensis) seedlings in a granite-derived forest soil. Environ. Sci. 12: 33-47
  15. Farquhar, G.D. and T.D. Sharkey. 1982. Stomatal conductance and photosynthesis. Ann. Rev. Plant Physiol. 33: 317-345 https://doi.org/10.1146/annurev.pp.33.060182.001533
  16. Fornasiero, R.B. 2003. Fluorides effects on Hypericum perforatum plants: first field observations. Plant Sci. 165: 507-513 https://doi.org/10.1016/S0168-9452(03)00205-X
  17. Harley, P.C. and T.D. Sharkey. 1991. An improved model of $C_3$ photosynthesis at high $CO_2$: reversed $O_2$ sensitivity explained by lack of glycerate reentry into the chloroplast. Photosyn. Res. 27: 169-178
  18. Izuta, T., T. Yamaoka, T. Nakaji, T. Yonekura, M. Yokoyama, H. Matsumura, S. Ishida, K. Yazaki, R. Funada, and T. Koike. 2001. Growth, net photosynthetic rate, nutrient status and secondary xylem anatomical characteristics of Fagus crenata seedlings grown in brown forest soil acidified with $H_2SO_4$ solution. Water Air Soil Pollut. 130: 1007-1012 https://doi.org/10.1023/A:1013948026482
  19. Jacob, J. and D.W. Lawlor. 1991. Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize, and wheat plants. J. Exp. Bot. 42: 1003-1011 https://doi.org/10.1093/jxb/42.8.1003
  20. Kayama, M., A.M. Quoreshi, O. Kitaoka, Y. Kitahashi, Y. Sakamoto, Y. Maruyama, M. Kitao and T. Koike. 2003. Effects of deiding salt on the vitality and health of two spruce species, Picea abies Karts., and Picea glehnii Masters planted along readsides in northern Japan. Environ. Pollut. 124: 127-137 https://doi.org/10.1016/S0269-7491(02)00415-3
  21. Kitao, M., T.T. Lei and T. Koike. 1997. Comparison of photosynthetic responses to manganese toxicity of deciduous broad-leaved trees in northern Japan. Environ. Pollut. 97: 113-118 https://doi.org/10.1016/S0269-7491(97)00064-X
  22. Lambers, H., F.S. Chapin III and T.L. Pons. 1998. Plant Physiological Ecology. Springer-Verlag. New York, 540p
  23. Larcher, W. 2003. Physiological Plant Ecology. 4th ed, Springer-Verlag, New York. 506p
  24. Lauer, M.J., S.G. Pallardy, D.G. Blevins and D.D. Randall. 1989. whole leaf carbon exchange characteristics of phosphate deficient soybeans (Glycine max L.). Plant Physiol. 91: 848-854 https://doi.org/10.1104/pp.91.3.848
  25. Lee, C.H., S.W. Lee, Y.K. Kim and J.H. Cho. 2003. Atmospheric quality, soil acidification and tree dicline in three Korean red pine forest. Korean J. Ecol. 26: 87-89 https://doi.org/10.5141/JEFB.2003.26.2.087
  26. Lewis, J.D., K.L. Griffen, R.B. Thomas and B.R. Strain. 1994. Phosphorus supply affects the photosynthetic capacity of loblolly pine grown in elevated carbon dioxide. Tree Physiol. 14: 229-1244
  27. Matyssek, R., M.S. Gunthardt-Goerg, W. Landolt and T. Keller. 1993. Whole-plant growth and leaf formation in ozonated hybrid poplar (Populus ${\times}$ euramericana). Environ. Pollut. 81: 207-212 https://doi.org/10.1016/0269-7491(93)90203-Z
  28. Matyssek, R., P. Reich, R. Oren and W.E. Winner. 1995. Response mechanisms of conifers to air pollutants. In W.K. Smith and T.M. Hinckley (eds.), Ecophysiology of coniferous forests. Academic Press, San Diego, CA. pp. 255-308
  29. Nable, R.O., R.L. Houtz and G.M. chemiae. 1988. Early inhibitation of photosynthesis during development of Mn toxicity in tobacco. Plant Physiol. 86: 1136-1142 https://doi.org/10.1104/pp.86.4.1136
  30. Reich, P.B. 1983. Effects of low concentrations of $O_3$ on net photosynthesis, dark respiration and chlorophyll contents in spring hybrid poplar leaves. Plant Physiol. 73: 291-296 https://doi.org/10.1104/pp.73.2.291
  31. Reich, P.B., T. Koike, S.T. Gowers and A.W. Schoettle. 1995. Causes and consequences of variation in conifer leaf life-span. In W.K. Smith and T.M. Hinckley(eds.), Ecophysiology of coniferous forests. Academic Press, San Diego, CA. pp 225-254
  32. Shareky, T.D. 1985. Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. Bot. Rev. 51: 53-105 https://doi.org/10.1007/BF02861058
  33. Thornley, J.H.M. 1976. Mathematical models in plant physiology. Academic Press. London
  34. Winner, W.E. 1981. The effects of SO2 on photosynthesis and stomatal behavior of Mediterranean-climate shrubs and herbs. In Margaris, N.S. and N.A. Mooney(eds.), Components of Productivity of Mediterranean Climate Regions. Basic and Applied Aspects. Dr. W. Junk Publishers. The Hague. pp. 91-103