Synthesis and Characterization of Aliphatic Hyperbranched Polyesters

지방족 고차가지구조 폴리에스테르의 합성 및 물성

  • Kim Jang-Yup (Department of Chemical Environmental Engineering Soongsil University) ;
  • Ok Chang-Yul (Department of Chemical Environmental Engineering Soongsil University) ;
  • Lee Sang-Won (Department of Chemical Environmental Engineering Soongsil University) ;
  • Huh Wansoo (Department of Chemical Environmental Engineering Soongsil University)
  • 김장엽 (숭실대학교 환경화학공학과) ;
  • 옥창율 (숭실대학교 환경화학공학과) ;
  • 이상원 (숭실대학교 환경화학공학과) ;
  • 허완수 (숭실대학교 환경화학공학과)
  • Published : 2005.12.01

Abstract

The hydroxy terminated aliphatic hyperbranched polyesters having different generations were synthesized by using melt polycondensation procedure. Then, the terminal groups of hyperbranched polyesters were modified by using acryloyl chloride and characterized by $\^{1}H$-NMR and GPC techniques. As a result of the modification of terminal groups for hyperbranched polyesters, the phase of the polymers were changed from sticky solid to high viscous liquid indicating that the glass transition temperatures of modified hyperbranched polyesters were lower than the original one. The thermal stabilities of hydroxy terminated hyperbranched polyesters were higher than those of terminal group-modified polymers.

하이드록시 말단의 지방족 고차가지구조 폴리에스테르를 용융축합법을 이용하여 합성하였다. 말단의 하이드록시 그룹을 acryloyl chloride를 사용하여 비닐 말단으로 변환시켰으며, 말단변화에 따른 구조를 분석하고 분자량을 측정하였다. 비닐 말단의 지방족 고차가지구조 폴리에스테르는 점도가 높고 노란색의 투명한 액체이며, 하이드록시 말단의 지방족 고차가지구조 폴리에스테르에 비해 유리전이온도가 낮았다. 또한 비닐 말단으로 변형한 후에는 열안정성이 감소하였으며, 말단 작용기의 전환율 차이에 의해 불규칙적인 열분해거동을 보였다.

Keywords

References

  1. Y. H. Kim and O. W. Webster, Macromolecules, 25, 5561 (1992) https://doi.org/10.1021/ma00047a001
  2. Y. H. Kim and O. W. Webster, Macromolecules, 27, 1968 (1994) https://doi.org/10.1021/ma00085a048
  3. C. J. Hawker, R. Lee, and J. M. J. Frechet, J. Am. Chem. Soc., 113, 4583 (1991) https://doi.org/10.1021/ja00003a037
  4. R. Pruthtikul, M. M. Coleman, P. C. Painter, and N. B. Tan, Macromolecules, 34, 4145 (2001) https://doi.org/10.1021/ma002404h
  5. D. Parker and W. J. Feast, Macromolecules, 34, 5792 (2001) https://doi.org/10.1021/ma002404h
  6. A. Sidorenko, X. W. Zhai, S. Peleshanko, A. Greco, V. V. Shevchenko, and V. V. Tsukruk, Langmuir, 17, 5924 (2001) https://doi.org/10.1021/la0010572
  7. K. L. Wooley, J. M. J. Frechet, and C. J. Hawker, Polymer, 35,4489 (1994) https://doi.org/10.1016/0032-3861(94)90793-5
  8. K. L. Wooley, C. J. Hawker, R. Lee, and J. M. J. Frechet, Polym. J., 2, 187 (1994)
  9. W. J. Feast and N. M. J. Stainton, Mater. Chem., 5, 404 (1995) https://doi.org/10.1039/jm9950500995
  10. R. Mezzenga and J. A. E. Manson, J. Mater. Sci., 36, 4883 (2001) https://doi.org/10.1023/A:1011880019156
  11. PO 100-1 Anayltical Method, 'Determination of Hydroxy Number and Hydroxy Content' , Perstorp Specialty Chemicals (2000)
  12. E. Malmstrom, M. Johansson, and A. Hult, Macromolecules, 28, 1698 (1995) https://doi.org/10.1021/ma00109a049
  13. Q. Teng, T. Liming, F. Zhiwei, T. Xinlin, L. Yi, L. Deshan, and Y. Wantai, Polym. Adv. Technol., 15, 65 (2004) https://doi.org/10.1002/pat.432
  14. K. L. Wooley, C. J. Hawker, J. M. Pochan, and J. M. J. Frechet, Macromolecules, 26, 1514 (1993) https://doi.org/10.1021/ma00059a006