Synthesis and Physical Properties of Hyperbranched Aromatic Polyamide

고차가지구조 방향족 폴리아미드의 합성 및 물성

  • Ok Chang-Yul (Department of Chemical Environmental Engineering Soongsil University) ;
  • Kim Jang-Yup (Department of Chemical Environmental Engineering Soongsil University) ;
  • Huh Wansoo (Department of Chemical Environmental Engineering Soongsil University) ;
  • Lee Sang-Won (Department of Chemical Environmental Engineering Soongsil University)
  • 옥창율 (숭실대학교 환경화학공학과) ;
  • 김장엽 (숭실대학교 환경화학공학과) ;
  • 허완수 (숭실대학교 환경화학공학과) ;
  • 이상원 (숭실대학교 환경화학공학과)
  • Published : 2005.12.01

Abstract

The aromatic hyperbranched polyamide was synthesized from 5-aminoisophthalic acid by direct polycondensation with triphenylphosphite (TPP) catalyst as a condensing agent. The modification of end-groups in the resulting hyperbranched polymer (HBP) with various alkyl alcohols were conducted. The modification of end-groups of HBP by alkyl groups resulted in an improved solubility in the THF comparing to that of the carboxylic acid-terminated aromatic HBP, Also, 10 wt$\%$ weight loss temperature decreased by increasing the length of alkyl group.

[ $\AB_{2}$ ]형 단량체인 5-aminoisophthalic acid로부터 TPP를 촉매를 이용한 축중합 반응을 통하여 고차가지구조 방향족 폴리아미드를 합성하였다. 합성된 고차가지구조 고분자의 카복시 말단을 에탄올, 헥산올, 도데칸올로 에스테르화 하여 특성을 연구하였다. 카복시 말단의 고차가지구조 고분자에 비해 알킬기가 치환된 고차가지구조 고분자의 용해도가 증가하였다. 또한 말단의 알킬기의 길이가 길어짐에 따라 10wt$\%$ 무게 감소 온도가 감소하였다.

Keywords

References

  1. P. J. Floy, J. Am. Chem. Soc., 74, 2718 (1952) https://doi.org/10.1021/ja01131a008
  2. E. Buhleier, W. Wehner, and F. Vogtle, Synthesis, 155 (1978)
  3. H. R. Kricheldorf, Q. Z. Zang, and G. Schwarz, Polymer, 23, 1821 (1982) https://doi.org/10.1016/0032-3861(82)90128-8
  4. Y. H. Kim and O. W. Webster, J. Am. Chem. Soc., 112,4592 (1990) https://doi.org/10.1021/ja00167a094
  5. D. A. Tomalia, H. Baker, J. Dewald, M. Hall, G. Kallos, S. Martin, J. Roeck, J. Ryder, and P. Smith, Polym. J.,17,117 (1985) https://doi.org/10.1295/polymj.17.985
  6. G. R. Newkome, Z. Yao, G. R. Baker, and V. K. Gupta, J. Org., Chem., 50, 2003 (1985) https://doi.org/10.1021/jo00211a052
  7. D. A. Tomalia, A. M. Naylor, and W. A. Go1ddard III, Angew Chem. Inst. Ed. Engl., 29, 138 (1990) https://doi.org/10.1002/anie.199001381
  8. A. Hult, M. Johansson, and E. Malmstrom, Adv. Polym. Sci., 143, 1 (1999) https://doi.org/10.1007/3-540-49780-3_1
  9. S. R. Turner, B. I. Voit, and T. H. Mourey, Macromolecules, 26, 4617 (1993) https://doi.org/10.1021/ma00069a031
  10. J. M. J. Frechet, Science, 263, 1710 (1994) https://doi.org/10.1126/science.8134834
  11. C. J. Hawker and J. M. J Frechet, J. Am. Chem. Soc., 112, 7638 (1990) https://doi.org/10.1021/ja00177a027
  12. C. -F. Shu and C. -M. Leu, Macromolecules, 32, 100 (c) https://doi.org/10.1021/ma981114m
  13. H. R. Kricheldorf, R. Hobzova, G. Schwarz, and C. -L. Schultz, J. Polym. Sci.; Part A: Polym. Chem., 42, 3751 (2004) https://doi.org/10.1002/pola.20217
  14. C. -F. Shu, C. -M. Leu, and F.- Y. Huang, Polymer, 40, 6591 (1999) https://doi.org/10.1016/S0032-3861(99)00003-8
  15. L. Tang, Y. Fnag, and X. Tang, J. Polym. Sci.; Part A: Polym. Chem., 43, 2921 (2005) https://doi.org/10.1002/pola.20762
  16. Y. H. Kim and O. W. Webster, Macromolecules, 25, 5561 (1992) https://doi.org/10.1021/ma00047a001