Development of non-fragile $H_{\infty}$ controller design algorithm for singular systems

특이시스템의 비약성 $H_{\infty}$ 제어기 설계 알고리듬 개발

  • Kim, Jong-Hae (Division of Electronic Eng., Sun Moon University)
  • 김종해 (선문대학교 전자공학부)
  • Published : 2005.11.01

Abstract

In this paper, we consider the synthesis of non-fragile $H_{\infty}$ state feedback controllers for singular systems and static state feedback controller with multiplicative uncertainty. The sufficient condition of controller existence, the design method of non-fragile $H_{\infty}$ controller, and the measure of non-fragility in controller are presented via LMI(linear matrix inequality) technique. Also, the sufficient condition can be rewritten as LMI form in terms of transformed variables through singular value decomposition, some changes of variables, and Schur complements. Therefore, the obtained non-fragile $H_{\infty}$ controller guarantees the asymptotic stability and disturbance attenuation of the closed loop singular systems within a prescribed degree. Moreover, the controller design method can be extended to the problem of robust and non-fragile $H_{\infty}$ controller design method for singular systems with parameter uncertainties. Finally, a numerical example is given to illustrate the design method.

본 논문은 특이시스템과 곱셈형 섭동을 가지는 제어기에 대한 비약성 $H_{\infty}$ 제어기 설계 알고리듬을 제안한다. 제어기가 존재할 조건과 비약성 $H_{\infty}$ 제어기 설계 방법 및 제어기에서의 비약성 척도를 선형행렬부등식 접근방법으로 제안한다. 또한, 특이치 분해와 변수치환 및 슈어 여수정리를 이용하여 구한 충분조건은 구하고자 하는 모든 변수의 견지에서 볼록최적화(convex optimization)가 가능한 하나의 선형행렬부등식으로 변형된다. 따라서, 제안한 비약성 $H_{\infty}$ 제어기는 점근적 안정성과 폐루프 특이시스템의 $H_{\infty}$ 노옴 유계 및 제어기의 곱셈형 섭동에 대한 안정성을 보장한다. 또한, 제안한 알고리듬을 이용하면 변수 불확실성을 가지는 특이시스템에 대한 강인 비약성 $H_{\infty}$ 제어기 설계 문제에도 쉽게 확장됨을 보인다. 마지막으로, 수치예제를 통하여 제안한 알고리듬의 타당성을 검증한다.

Keywords

References

  1. Keel, L.H., and Bhattacharyya, S.P., Robust, Fagile, or Optimal, IEEE Transactions on Automatic Control, Vol. 42, No.8, pp. 1098-1105, 1997 https://doi.org/10.1109/9.618239
  2. W. M. Haddad and J. R. Corrado, 'Resilient dynamic controller design via quadratic Lyapunov bounds,' Proc. of IEEE Conference on Decision and Control, pp. 2678-2683, 1997 https://doi.org/10.1109/CDC.1997.657785
  3. Famularo. D., Abdalah, C.T., Jadbabaie, A. Dorato, P., and Haddad, W.M., Robust Non-fragile LQ Controllers: The Static State Feedback Case, Proceedings of the American Control Conference, Philadelphia, Pennsylvania, pp. 1109- 1113, 1998 https://doi.org/10.1109/ACC.1998.703583
  4. Dorato, P., Non fragile Controller Design: An Overview, Proceedings of the American Control Conference, Philadelphia, Pennsylvania, pp. 2829-2831, 1998 https://doi.org/10.1109/ACC.1998.688371
  5. A. Jadbabie, C. T. Abdalah, D. Famularo, and P. Dorato, 'Robust non-fragile and optimal controller design via linear matrix inequalities,' Proc. of American Control Conference, pp. 2842-2846, 1998 https://doi.org/10.1109/ACC.1998.688374
  6. P. Dorato, C. T. Abdallah, and D. Famularo, 'On the design of non-fragile compensators via symbolic quantifier elimination,' World Automation Congress, pp. 9-14, 1998
  7. I. Masubuchi, Y. Kamitane, A. Ohara and N. Suda, '$H{\infty}$ control for descriptor systems: A matrix inequalities approach,' Automatica, vol. 33, pp. 669-673, 1997 https://doi.org/10.1016/S0005-1098(96)00193-8
  8. K. Takaba, N. Morihara, and T. Katayama, 'A generalized Lyapunov theorem for descriptor system,' Systems and Control Lett., vol. 24, pp. 49-51, 1995.no. 3, pp. 345-357, June 1998 https://doi.org/10.1016/0167-6911(94)00041-S
  9. P. Gahinet, A. Nemirovski, A. J. Laub, and M. Chilali, LMI Control Toolbox, The Math Works Inc., 1995
  10. A. Rhem and F. Allgower, '$H_{\infty}$ control of descriptor systems with norm-bounded uncertainties in the system matrices,' Proc. of American Control Conference, pp. 3244-3248, 2000 https://doi.org/10.1109/ACC.2000.879164
  11. K. Gu, '$H_{\infty}$ control of systems under norm bounded in all system matrices,' IEEE Trans. Automat. Control, vol. 39, pp. 1320-1322, 1994 https://doi.org/10.1109/9.293205