References
- F. Abergel, Attractor for a Navier-Stokes flow in an unbounded domain, Math. Model. Anal. 23 (1989), no. 3, 359-370 https://doi.org/10.1051/m2an/1989230303591
- F. Abergel, Existence and finite dimensionality of the global aitractor for evolution equations on unbounded domains, J. Differential Equations 83 (1990), no. 1, 85-108 https://doi.org/10.1016/0022-0396(90)90070-6
- A. V. Babin, The attractor of a Navier-Stokes system in an unbounded channellike domain, J. Dynam. Differential Equations 4 (1992), no. 4, 555-584 https://doi.org/10.1007/BF01048260
- A. V. Babin and M. I. Vishik, Attractors of partial differential equations in an unbounded domain, Proc. Roy. Soc. Edinburgh Sect. A 116A (1990), 221-243
- H. Bae and J. Roh, Existence of solutions of the g-Navier-Stokes equations, Taiwanese J. Math. 8 (2004), no. 1, 85-102 https://doi.org/10.11650/twjm/1500558459
- P. Constantin and C. Foias, Global Lyapunov exponents, Kaplan-Yorke fomulas and the dimension of the attmctor for the 2D Navier-Stokes equations, Comm. Pure Appl. Math. XXXVIII (1985), 1-27
- P. Constantin, C. Foias, C. Manley, and R. Temam, Determining modes and fractal dimension of turbulent flows, J. Fluid Mech. 150 (1988), 427-440
- P. Constantin, C. Foias, and R. Temam, Attractor representing turbulent flows, Mem. Amer. Math. Soc. 53 (1985). no. 314
- C. Foias and R. Temam, Some analytic and geometric properties of the solutions of the evolution Navier-Stokes equations, J. Math. Pures Appl, 58 (1979), 334-368
- J. K. Hale and G. Raugel, A damped hyperbolic equation on thin domains, Trans. Amer. Math. Soc. 329 (1992), 185-219 https://doi.org/10.2307/2154084
- D. Hundertmark, A. Laptev, and T. Weidl, New bounds on the Lieb-Thirring constants, Invent. Math. 140 (2000), no. 3, 693-704 https://doi.org/10.1007/s002220000077
- O. Ladyzhenskaya, On the dynamical system generated by the navier-Stokes equations, Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. lnst. Steklov.(POMI) 27 (1972), 91-114
- O. Ladyzhenskaya, On the dynamical system genemted by the runner-Stokes equations, English tranlation in J. of Soviet Math. 3 (1975),458-479 https://doi.org/10.1007/BF01084684
- O. Ladyzhenskaya, Attractor for Semigroup and Evolution Equations, Lezioni Lincei, Cam-bridge University Press, 1991
- I. Moise, R. Temam, and M. Ziane, Asymptotic analysis of the Navier-Stokes equations in thin domains, Topol. Methods Nonlinear Anal. 10 (1997), 249.--282
- S. Montgomery-Smith, Global regularity of the Navier-Stokes equations on thin three dimensional domains with periodic boundary condtitions, Electron. J. Differential Equations 11 (1999), 1-19 https://doi.org/10.1023/A:1021889401235
- G. Raugel and G. R. Sell, Naoier-Stokes equations on thin 3D domains. I. Global attmctors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993), 503-568 https://doi.org/10.2307/2152776
- G. Raugel and G. R. Sell, Navier-Stokes equations on thin 3D domains II, Global regularity of spa-tially periodic solutions, in 'Nonlinear Partial Differential Equations and Their Applications', College de France Seminar, Longman, Harlow, XI (1994), 205-247
- J. Roh, g-Navier-Stokes equations, Thesis, University of Minnesota, 2001
- J. Roh, g-Navier-Stokes equations, Dynamics of the g-Navier-Stokes equations, J. Differential Equations 211 (2005), issue 2, 452-484 https://doi.org/10.1016/j.jde.2004.08.016
- R. Rosa, The global attmctor fro the 2D Navier-Stokes Flow in some unbounded domains, Nonlinear Analysis, Theory, Methods, and Applications 32 (1998), no. 1, 71-85
- G. R. Sell and Y. You, Dynamics of evolutionary equations, Applied Mathematical Sciences, 143, Springer-Verlag, New York, 2002
- R. Temam, Infinite-Dimensional Dynamical System in Mechanics and Physics, Applied Mathematical Sciences, 68, Springer-Verlag, New-York, 1988
- R. Temam, Navier-Stokes Equations Theory and Numerical Analysis, Elsevier Sci-ence Pubilshers B. V. New York. 1979
- R. Temam and M. Ziane, Navier-Stokes equations in three-dimensional thin domains with various boundary conditions, Adv. Differential Equations 1 (1996), 499-546
- R. Temam and M. Ziane, Navier-Stokes equations in thin spherical domains, Contemp. Math. 209 (1997), 281-314 https://doi.org/10.1090/conm/209/02772
Cited by
- Existence and finite time approximation of strong solutions to 2D g-Navier–Stokes equations vol.38, pp.3, 2013, https://doi.org/10.1007/s40306-013-0023-2
- On the Stationary Solutions to 2D g-Navier-Stokes Equations vol.42, pp.2, 2017, https://doi.org/10.1007/s40306-016-0180-1
- PULLBACK ATTRACTORS FOR 2D g-NAVIER-STOKES EQUATIONS WITH INFINITE DELAYS vol.31, pp.3, 2016, https://doi.org/10.4134/CKMS.c150186
- PULLBACK ATTRACTORS FOR STRONG SOLUTIONS OF 2D NON-AUTONOMOUS g-NAVIER-STOKES EQUATIONS vol.40, pp.4, 2015, https://doi.org/10.1007/s40306-014-0073-0
- Spectral Galerkin Method in Space and Time for the 2Dg-Navier-Stokes Equations vol.2013, 2013, https://doi.org/10.1155/2013/805685
- ASYMPTOTIC BEHAVIOR OF STRONG SOLUTIONS TO 2D g-NAVIER-STOKES EQUATIONS vol.29, pp.4, 2014, https://doi.org/10.4134/CKMS.2014.29.4.505