DOI QR코드

DOI QR Code

광간섭 단층촬영(OCT)용 PZT 광경로 지연기에서의 편광모드 분산 및 열요동 보상

Compensations of Polarization Mode Dispersion and Thermal Drift in Optical Coherence Tomography with PZT Optical Delay Lines

  • 김영관 (경희대학교 전자정보대학i레이저공학연구소) ;
  • 박성진 (경희대학교 전자정보대학i레이저공학연구소) ;
  • 김용평 (경희대학교 전자정보대학i레이저공학연구소)
  • Kim, Young-Kwan (College of Electronics and Information/Institute for Laser Engineering, Kyunghee University) ;
  • Park, Sung-Jin (College of Electronics and Information/Institute for Laser Engineering, Kyunghee University) ;
  • Kim, Yong-Pyung (College of Electronics and Information/Institute for Laser Engineering, Kyunghee University)
  • 발행 : 2005.12.01

초록

광간섭 단층촬영(OCT)용으로 원통형 압전소자(PZT)와 단일모드 광섬유를 이용한 광경로 지연기를 제작하여 그 특성을 분석하였다. 광경로 지연기에서 발생하는 편광모드 분산은 편광조절기로 조절하였고, 열요동을 2중 광경로 지연기를 구성하여 최소화하였다. 이중 광경로 지연기는 단일 광경로 지연기에 비해 2배의 측정 깊이와 속도를 구현하여 $18.6\pm0.5{\mu}m$의 해상도. 측정 깊이 1.68 mm, 측정 녹도 360.4 mm/s를 각각 얻었다.

We have fabricated and characterized optical delay lines for optical coherence tomography, which is composed of cylindrical PZT(piezoelectric transducer) and single mode optical fiber. The polarization mode dispersion from the optical delay lines was compensated by the polarization controllers. By applying the duplex optical delay line, we minimized the thermal drift due to optical delay lines and obtained the scan range of 2 times that of a single optical delay line. The OCT system showed resolution of $18.6\pm0.5{\mu}m$, scanning range of 1.68mm, and scanning speed of 360.4mm/s.

키워드

참고문헌

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. S. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, 'Optical Coherence Tomography,' Science vol. 254, pp. 1178-1181, 1991 https://doi.org/10.1126/science.1957169
  2. P. Klovekorn, J. Munch 'Variable optical delay line with diffraction-limited autoalignment,' Appl. Opt. vol. 37, no. 10, pp. 1903-1904, 1998 https://doi.org/10.1364/AO.37.001903
  3. T. Yamada H, Hibino Y, Mitachi S., 'Range extension in optical low coherence reflectometry achieved by using a pair of retroreflectors,' Electron Lett. vol. 31, no. 18, pp. 1565-1567, 1995 https://doi.org/10.1049/el:19951049
  4. Chin B. Su, 'Achieving variation of the optical path length by a few millimeters at millisecond rates for imaging of turbid media and optical interferometry: A new technique,' Opt. Lett. Vol. 22, no. 10, pp. 665-667, 1997 https://doi.org/10.1364/OL.22.000665
  5. X. Lui, M. J. Cobb, and X. Li, 'Rapid scanning all-reflective optical delay line for real-time optical coherence tomography,' Opt. Lett., vol. 29, no. 1, pp. 80-82, 2004 https://doi.org/10.1364/OL.29.000080
  6. G. J. Tearney, B. E. Bouma, S. A. Boppat, and B. Golubovic, E. A. Swanson, J. G. Fujimoto. 'Rapid acquisition of in vivo biological images by use of optical coherence tomography,' Opt. Lett. vol. 21, no.17, pp. 1408-1410, 1996 https://doi.org/10.1364/OL.21.001408
  7. D. G. Luke, R McBride, and J. D. C. Jones, 'Polarization mode dispersion minimization in fiber-wound piezoelectric cylinders,' Opt. Lett., vol. 20, no. 24, pp. 2550-2552, 199 https://doi.org/10.1364/OL.20.002550
  8. F. Felchtein, V. Gelikonov, G. Gelikonov, N. Gladkova, V. Leonov, and A. Serge 'Optical fiber interferometer and piezoelectric modulator,' International application PCT/ RU96/00045, 1996
  9. G. J. Tearney, B. E. Bouma, and J. G. Fujimoto., 'Highspeed phase- and group-delay scanning with a grating-based phase control delay line,' Opt. Lett. vol. 22, no. 23, pp. 1811-1813, 1997 https://doi.org/10.1364/OL.22.001811
  10. B. E. Bouma, G. J. Tearney, 'Handbook of Optical Coherence Tomography', Marcel Dekker AG, 2002
  11. J. M. Schmitt, 'Optical Coherence Tomography (OCT): A Review,' IEEE J. Select. Topics Quantum Electron, vol. 5, no. 4, pp. 1205-1215, 1999 https://doi.org/10.1109/2944.796348
  12. S. C. Rashleigh and R. Ulrich, 'Polarization mode dispersion in single-mode-fibers,' Opt. Lett. vol. 3, no. 2, pp. 60-62, 1978 https://doi.org/10.1364/OL.3.000060
  13. R. Ulrich and S. C. Rashleigh, and W. Eickhoff, 'Bending-induced birefringence in single-mode fibers,' Opt. Lett., Vol. 5, no. 6, pp. 273-275, 1980 https://doi.org/10.1364/OL.5.000273
  14. A. Yariv, 'Optical Electronics in Modern communications,' Oxford, 1997