Nano stamp fabrication for photonic crystal waveguides

나노 광소자용 나노스탬프 제조공정 연구

  • 정명영 (부산대학교 나노기술학과) ;
  • 정은택 (부산대학교 나노과학과 대학원) ;
  • 김창석 (부산대학교 나노기술학과)
  • Published : 2005.12.01

Abstract

Photonic crystals, periodic structure with a high refractive index contrast modulation, have recently become very interesting platform for the manipulation of light. The existence of a photonic bandgap, a frequency range in which the propagation of light is prevented in all directions, makes photonic crystal very useful in application where the spatial localization of light is required, for example waveguide, beam splitter, and cavity. However, the fabrication of 3 dimensional photonic crystals is still difficult process. A concept that has recently attracted a lot of attention is a planar photonic crystal based on a dielectric membrane, suspended in the air and perforated with two dimensional lattice of hole. The fabrication of Si master with pillar structure using hot embossing process is investigated for two dimensional, low-index-contrast photonic crystal waveguide. From our research we show that the multiple stamp copy process proved to be feasible and useful.

Keywords

References

  1. Yablonovitch, E., 'Phys. Rev. Lett,' Vol. 58, pp. 2059,1987 https://doi.org/10.1103/PhysRevLett.58.2059
  2. Joannopoulos, J. D., Meade, R. D. and Winn, J. N. 'Photonic Crystals:Molding the Flow of Light sPrinceton,' University Press, Princeton, Chaps. 4 and 5,1995
  3. Meade, R. D., Devenyi, A., Joannopoulos, J. D., Alerhand, O. L., A.Smith, D. and Kash, K.,' J. Appl. Phys,' Vol. 75, pp. 4753, 1994 https://doi.org/10.1063/1.355934
  4. Seekamp, J., Zankovych, S., Helfer, A.H., Maury, P., Sotomayor Torres, C.M., Bottger, G., Liguda, C., Eich, M., Heidari, B., Montelius, L. and Ahopelto, J., 'Nanoimprinted passive optical devices,' Nanotechnology, 13, pp. 581-586,2002 https://doi.org/10.1088/0957-4484/13/5/307
  5. Noda, S., Chutinan, A. and Imada, M., 'Nature (Londond ),' Vol. 407, pp. 608, 2000 https://doi.org/10.1038/35036532
  6. Bottger, G., Liguda, C., Schmidt, M. and Eich, M., 'Appl. Phys. Lett,' Vol. 81, pp. 2517, 2002 https://doi.org/10.1063/1.1511816
  7. Liguda, C., Bottger, G., Kuligk, A., Blum, R., Eichb, M., Roth, H., Kunert, J., Morgenroth, W., Elsner, H. and Meyer, H. G., 'Polymer photonic crystal slab waveguides,' Appl. Phys. Lett., Vol. 78, No. 17, 2434-2436,2001 https://doi.org/10.1063/1.1366364
  8. Sotomayor Torres, C. M., Zankovych, S., Seekamp J., Kam, A. P., Cedeno, C. C., Hoffmann, T., Ahopelto, J., Reuther, F., Pfeiffer, K., Bleidiessel, G., Gruetzner, G., Maximov, M. V.and Heidari, B., 'Mater. Sci. Eng,.C,' Vol. 23, pp. 23, 2003 https://doi.org/10.1016/S0928-4931(02)00221-7
  9. Chou, S.Y., Krauss, P.R., Zhang, W., Guo, L. and Zhuang, L., 'Sub-10nm imprint lithography and applications,' J. Vac. Sci. Technol, B15, pp. 2897-2904,1997 https://doi.org/10.1116/1.589752
  10. Jaszewski, R. W., Schift, H., Gobrecht, J.and Smith P., 'Microelectron. Eng,' Vol. 41, pp. 575, 1998 https://doi.org/10.1016/S0167-9317(98)00135-X
  11. Kunz, K. S. and Luebbers, R. J., 'Finite Difference Time Domain Method for Electromagnetics', sCRC Press, Boca Raton, FL, 1993