DOI QR코드

DOI QR Code

Interval Estimation for a Binomial Proportion Based on Weighted Polya Posterior

이항 비율의 가중 POLYA POSTERIOR 구간추정

  • 이승천 (한신대학교 정보통계학과)
  • Published : 2005.11.01

Abstract

Recently the interval estimation of a binomial proportion is revisited in various literatures. This is mainly due to the erratic behavior of the coverage probability of the will-known Wald confidence interval. Various alternatives have been proposed. Among them, Agresti-Coull confidence interval has been recommended by Brown et al. (2001) with other confidence intervals for large sample, say n $\ge$ 40. On the other hand, a noninformative Bayesian approach called Polya posterior often produces statistics with good frequentist's properties. In this note, an interval estimator is developed using weighted Polya posterior. The resulting interval estimator is essentially the Agresti-Coull confidence interval with some improved features. It is shown that the weighted Polys posterior produce an effective interval estimator for small sample size and a severely skewed binomial distribution.

최근 여러 학자들에 의해 이항 비율의 구간 추정에 많이 사용되고 있는 Wald 신뢰구 간의 문제점이 재조명되고 있고, 이에 대한 대안으로 이항 비율의 새로운 신뢰구간들이 발표되고 있다. 본 논문에서는 가중 Polya posterior를 이용한 베이지안 구간추정을 구하였다. 이 구간추정은 이항분포의 공액분포인 베타 사전분포에서 구한 전통적인 베이지안 구간추정과 같으나 추정의 편의를 위하여 정규근사에 의한 신뢰구간을 구할 때, 표본크기가 크면 실제적으로 Argresti와 Coull (1998)의 신뢰구간과도 일치하였다. 또 새로운 신뢰구간은 표본크기가 작은 경우와 비율이 극히 작은 경우에도 매우 유용한 신뢰구간이 된다는 것을 살펴보았다.

Keywords

References

  1. Agresti, A. and Coull, B. A. (1998). Approximation is better than 'exact' for interval estimation of binomial proportions, American Statistician, 52, 119-126 https://doi.org/10.2307/2685469
  2. Agresti, A. and Caffo, B. (2000). Simple and effective confidence intervals for proportions and differences of proportions result from adding two successes and two failures, The American Statistician, 54, 280-288 https://doi.org/10.2307/2685779
  3. Blyth, C. R. and Still, H. A. (1983). Binomial confidence intervals, Journal of the American Statistical Association, 78, 108-116 https://doi.org/10.2307/2287116
  4. Brown, L. D., Cai, T. T. and DasGupta, A. (2001). Interval estimation for a binomial proportion, Statistical Science, 16, 101 - 133
  5. Brown, L. D., Cai, T. T. and DasGupta, A. (2002). Confidence intervals for a binomial proportion and asymptotic expansions, The Annals of Statistics, 30, 160-201 https://doi.org/10.1214/aos/1015362189
  6. Feller, W. (1968). An Introduction of Probability Theory and Its Applications, volumn I, Wiley, New York
  7. Ghosh, B. K. (1979). A comparison of some approximate confidence intervals for the binomial parameter, Journal of the American Statistical Association, 74, 894-900 https://doi.org/10.2307/2286420
  8. Ghosh, M. and Meeden, G. D. (1998). Bayesian Methods for Finite Population Sampling, Chapman & Hall, London
  9. Meeden, G. D. (1999). Interval estimators for the population mean for skewed distributions with a small sample size, Journal of Applied Statistics, 26, 81-96 https://doi.org/10.1080/02664769922674
  10. Wilson, E. B. (1927). Probable inference, the law of succession and statistical inference, Journal of the American Statistical Association, 22, 209-212 https://doi.org/10.2307/2276774