Abstract
Recently the interval estimation of a binomial proportion is revisited in various literatures. This is mainly due to the erratic behavior of the coverage probability of the will-known Wald confidence interval. Various alternatives have been proposed. Among them, Agresti-Coull confidence interval has been recommended by Brown et al. (2001) with other confidence intervals for large sample, say n $\ge$ 40. On the other hand, a noninformative Bayesian approach called Polya posterior often produces statistics with good frequentist's properties. In this note, an interval estimator is developed using weighted Polya posterior. The resulting interval estimator is essentially the Agresti-Coull confidence interval with some improved features. It is shown that the weighted Polys posterior produce an effective interval estimator for small sample size and a severely skewed binomial distribution.
최근 여러 학자들에 의해 이항 비율의 구간 추정에 많이 사용되고 있는 Wald 신뢰구 간의 문제점이 재조명되고 있고, 이에 대한 대안으로 이항 비율의 새로운 신뢰구간들이 발표되고 있다. 본 논문에서는 가중 Polya posterior를 이용한 베이지안 구간추정을 구하였다. 이 구간추정은 이항분포의 공액분포인 베타 사전분포에서 구한 전통적인 베이지안 구간추정과 같으나 추정의 편의를 위하여 정규근사에 의한 신뢰구간을 구할 때, 표본크기가 크면 실제적으로 Argresti와 Coull (1998)의 신뢰구간과도 일치하였다. 또 새로운 신뢰구간은 표본크기가 작은 경우와 비율이 극히 작은 경우에도 매우 유용한 신뢰구간이 된다는 것을 살펴보았다.